简要地回顾了代价敏感学习的理论和现有的代价敏感学习算法.将代价敏感学习算法分为两类,分别是直接代价敏感学习和代价敏感元学习,其中代价敏感元学习可以将代价不敏感的分类器转换为代价敏感的分类器.提出了一种简单、通用、有效的元...简要地回顾了代价敏感学习的理论和现有的代价敏感学习算法.将代价敏感学习算法分为两类,分别是直接代价敏感学习和代价敏感元学习,其中代价敏感元学习可以将代价不敏感的分类器转换为代价敏感的分类器.提出了一种简单、通用、有效的元学习算法,称为经验阈值调整算法(简称ETA).评估了各种代价敏感元学习算法和ETA的性能.ETA几乎总是得到最低的误分类代价,而且它对误分类代价率最不敏感.还得到了一些关于元学习的其它有用结论.文章是"Thresholding for Making Classifiers Cost-sensitive"的改进和扩展版本,原文章由Victor S.Sheng和Charles X.Ling完成,发表于AAAI2006国际会议.展开更多
采集接触网绝缘子泄漏电流时存在大量干扰,且使用经验模态分解(Empirical Mode Decomposition,EMD)方法去噪时存在端点效应和虚假分量的问题。提出利用类似极值延拓法和功率比值法(The Ratio of Power,TRP)解决EMD存在的上述问题,结合...采集接触网绝缘子泄漏电流时存在大量干扰,且使用经验模态分解(Empirical Mode Decomposition,EMD)方法去噪时存在端点效应和虚假分量的问题。提出利用类似极值延拓法和功率比值法(The Ratio of Power,TRP)解决EMD存在的上述问题,结合小波阈值方法对泄漏电流进行去噪。选择小波阈值去噪作为对比,对泄漏电流仿真模型和高压实验采集的泄漏电流进行去噪处理。通过去噪前后的有效值、三次谐波和基波幅值之比和信噪比对去噪效果进行评价。结果表明类似极值延拓法和TRP法可有效解决端点效应和虚假分量问题,改进EMD阈值去噪方法去噪效果优于小波阈值去噪。改进EMD阈值去噪方法具有自适应性,适用于污湿情况下的绝缘子泄漏电流去噪处理。展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
文摘简要地回顾了代价敏感学习的理论和现有的代价敏感学习算法.将代价敏感学习算法分为两类,分别是直接代价敏感学习和代价敏感元学习,其中代价敏感元学习可以将代价不敏感的分类器转换为代价敏感的分类器.提出了一种简单、通用、有效的元学习算法,称为经验阈值调整算法(简称ETA).评估了各种代价敏感元学习算法和ETA的性能.ETA几乎总是得到最低的误分类代价,而且它对误分类代价率最不敏感.还得到了一些关于元学习的其它有用结论.文章是"Thresholding for Making Classifiers Cost-sensitive"的改进和扩展版本,原文章由Victor S.Sheng和Charles X.Ling完成,发表于AAAI2006国际会议.
文摘采集接触网绝缘子泄漏电流时存在大量干扰,且使用经验模态分解(Empirical Mode Decomposition,EMD)方法去噪时存在端点效应和虚假分量的问题。提出利用类似极值延拓法和功率比值法(The Ratio of Power,TRP)解决EMD存在的上述问题,结合小波阈值方法对泄漏电流进行去噪。选择小波阈值去噪作为对比,对泄漏电流仿真模型和高压实验采集的泄漏电流进行去噪处理。通过去噪前后的有效值、三次谐波和基波幅值之比和信噪比对去噪效果进行评价。结果表明类似极值延拓法和TRP法可有效解决端点效应和虚假分量问题,改进EMD阈值去噪方法去噪效果优于小波阈值去噪。改进EMD阈值去噪方法具有自适应性,适用于污湿情况下的绝缘子泄漏电流去噪处理。
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.