Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch...Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.展开更多
The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.I...The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.展开更多
The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in v...The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in vivo functions of protein-polymer conjugates has not been well elucidated. Herein we report the effect of molecular weight of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) on the in vitro and in vivo properties of C-termi- nal interferon-alpha (IFN)-POEGMA conjugates. Increasing the molecular weight of POEGMA decreased the in vitro activity of IFN-ct but increased its thermal stability and in vivo pharmacokinetics. Intriguingly, the in vivo antitumor efficacy of IFN-a was increased by increasing the POEGMA molecular weight from ca. 20 to 60 kDa, but was not further increased by increasing the molecular weight of POEGMA from ca. 60 to 100 kDa due to the neutralization of the improved pharmacokinetics and the reduced in vitro activity. This finding offers a new viewpoint on the molecular size rationale for designing next-generation protein-polymer conjugates, which may benefit patients by reducing admin- istration frequency and adverse reactions, and improving therapeutic efficacy.展开更多
文摘Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.
基金the National Natural Science Foundation of China(21003048,10974054,and 20933002)Shanghai PuJiang Program (09PJ1404000) for financial support XXY is also supported by "Scientific Research Foundation for Agricultural Machinery Bureau of Jiangsu Province (gxz10008)"CGJ is also supported by "the Fundamental Research Funds for the Central Universities"
文摘The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.
基金financially supported by Grants from the National Natural Science Foundation of China (21274043 and 21534006).
文摘The covalent attachment of protein-resistant polymers to therapeutic proteins is a widely used method for extending their in vivo half-lives; however, the effect of molecular weight of polymer on the in vitro and in vivo functions of protein-polymer conjugates has not been well elucidated. Herein we report the effect of molecular weight of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) on the in vitro and in vivo properties of C-termi- nal interferon-alpha (IFN)-POEGMA conjugates. Increasing the molecular weight of POEGMA decreased the in vitro activity of IFN-ct but increased its thermal stability and in vivo pharmacokinetics. Intriguingly, the in vivo antitumor efficacy of IFN-a was increased by increasing the POEGMA molecular weight from ca. 20 to 60 kDa, but was not further increased by increasing the molecular weight of POEGMA from ca. 60 to 100 kDa due to the neutralization of the improved pharmacokinetics and the reduced in vitro activity. This finding offers a new viewpoint on the molecular size rationale for designing next-generation protein-polymer conjugates, which may benefit patients by reducing admin- istration frequency and adverse reactions, and improving therapeutic efficacy.