A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the...A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.展开更多
Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning el...Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.展开更多
The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was emplo...The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The...The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.展开更多
A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjun...A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.展开更多
A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics...A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.展开更多
A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This typ...A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.展开更多
基金Projects(51404041,51304249)supported by the National Natural Science Foundation of ChinaProject(2015JJ3016)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject supported by the State Key Laboratory for Powder Metallurgy Foundation,Central South University,Changsha,China
文摘A novel SiC?ZrB2 coating was prepared using a two-step technique by slurry-sintering and chemical vapor reaction on carbon/carbon (C/C) composites. The SiC?ZrB2 coating was composed of the scattered ZrB2 phase and the continuous SiC phase. It was observed that a good adhesion was built between the coating and the C/C composites. The SiC?ZrB2 coating samples exhibited a better ablation resistance in comparison with the uncoated C/C composites. The SiO2?ZrO2 barrier layer, the heat dissipation of the gaseous products and the pinning effect of ZrO2 all contributed to the good ablation resistance of the SiC?ZrB2 coated composites.
基金Project(2011CB605804) supported by the National Basic Research Development Program of ChinaProject(2015JJ3167) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531810) supported by the Postdoctoral Science Foundation of China
文摘Carbon/carbon composites modified by NiAl alloy were prepared using vacuum reactive melt infiltration methods with NiAl and titanium mixed powders as raw materials. The microstructures were investigated by scanning electron microscopy. The fracture behavior, infiltration and oxidation mechanism were further discussed. The results indicated that NiAl alloy exhibited good wettability on the C/C preform because a TiC reaction layer formed at the interface. Multi-layer(PyC/TiC/NiAl+TiC) coating evenly and compactly distributed on the surface of the carbon fiber in tubular form. The penetration depth of molten NiAl alloys depended on the reaction between the PyC and titanium. The impact fracture was inclined to along the interface between the NiAl permeability layer and C/C matrix. Al_2TiO_5 and TiO_2 formed on the surface, while the interior multi-layer tubular structure partially remained after oxidation at 1773 K for 30 min.
基金This work was supported by the National Council for Science and Technology CONACYT(Mihalcea PhD scholarship 473734 and Dr.Chávez postdoctoral fellow 000614)The authors would like to thank the CIC of the UMSNH and the National Laboratory SEDEAM-CONACYT for the financial support and the facilities provided for the development of this study.We would also like to thank the Laboratory“LUMIR”Geosciences of the UNAM,Juriquilla,for the 3D image acquisition and processing.
文摘The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
基金Project(2014DFA50860) supported by the International Science&Technology Cooperation Program of China
文摘The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672027 and 90816025)the National Basic Research Program of China (Grant No. 2006CB601205)
文摘A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA030403)National Natural Science Foundation of China(Grant Nos.51032003,11274198,51102148,51221291)+2 种基金Shandong Natural Science Foundation(Grant No.ZR2010AM025)the China Postdoctoral Research Foundation(Grant No.2013M530042)the Research Fund for the Doctoral Program of Higher Education(Grant No.2010000612003)
文摘A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.
基金supported by National Basic Research Program of China(Grant No.2010CB923202)
文摘A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.