Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditi...Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.展开更多
In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zheji...In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.展开更多
Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an av...Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.展开更多
In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relati...In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.展开更多
In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carrie...In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.展开更多
Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stre...Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.展开更多
To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corr...To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.展开更多
Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing unde...Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.展开更多
Delamination in composite structures can be a serious threat to the safety of the structure. Delamination leads to loss of stiffness and strength of laminates under some conditions. This is particularly so in the case...Delamination in composite structures can be a serious threat to the safety of the structure. Delamination leads to loss of stiffness and strength of laminates under some conditions. This is particularly so in the case of compressively loaded structures as the loss of stiffness may lead to separation of layers, the consequences of which can be catastrophic. Causes of delamination are many. In aerospace applications, this includes manufacturing defects, as well as operationally induced defects such as bird strikes, hits due to runway debris and tool drops. In this work one of the main causes of delamination that is dealt with, is the one that redistribution of the stress state due to some defects all mostly like here is broken single fiber (cutout fiber) in composite system already initiated by one of the above causes. When a laminate is subjected to in-plane tension, the effects of delamination on the stiffness and strength may be characterized by analytical results concerning the onset of delamination growth and its subsequent development. Many of the analytical treatments deal with just free-edge delamination. In mean time the redistribution and the gradient of the stress state in composite system is playing an important role for causing delamination. The main task of this work is to analyze single fiber with and without cutout embedded in matrix. Different FE models were generated, from the results, the redistribution of the stress state around the defected fiber were presented and discussed. Finally concluded remarks were indicated.展开更多
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.
基金Projects(10472130,41202225) supported by the National Natural Science Foundation of China
文摘In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.
基金Project(2016YFB0301104) supported by the National Key Research and Development Program of ChinaProjects(51671041,51531002) supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjBX0040) supported by the Natural Science Foundation of Chongqing City,China
文摘Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.
基金The National Natural Science Foundation of China(No.51778139)the Construction System Science and Technology Project of Jiangsu Province(No.2019ZD058).
文摘In order to analyze the influence of replacement depth of black cotton soil(BCS)foundation on the initial cracking depth of a highway embankment,the laboratory tests were performed to construct the constitutive relationship between state variables and stress variables of BCS,and the coupled consolidation theory for unsaturated soils was employed to simulate the change in the major principal stress of the subgrade soils caused by water loss shrinkage of BCS with the help of Abaqus 6.11 codes.The simulation results indicate that the water losing shrinkage of BCS causes tensile stress within the subgrade,which leads to embankment cracking.The crack depth decreases with the increase in the BCS replacement depth and the embankment height,and increases with the increase in the burial depth of BCS.In the distribution area of deep BCS,the key values of foundation replacement depth for controlling the crack depth of the embankment with the height of 1 to 4 m are 1.2 and 1.5 m.In the low filling section,when the buried depth of BCS is 2,3 and 4 m,the key values of the foundation replacement depth to control the crack depth of the embankment are 0.8 and 1.2 m.In order to control the embankment cracking induced by the water losing shrinkage of BCS,a reasonable replacement depth of the foundation should be selected while slope protection is carried out well.
文摘In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.
基金Project(51075204)supported by the National Natural Science Foundation of ChinaProjects(2012ZB52026,2014ZB52024)supported by the Aeronautical Science Foundation of ChinaProject(NS2014024)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.
基金Supported by National Natural Science Foundation of China (No. 50978105)
文摘To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.
基金Project of Ministry of Housing and Urban-Rural Development of China(No.2012-K2-28)
文摘Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.
文摘Delamination in composite structures can be a serious threat to the safety of the structure. Delamination leads to loss of stiffness and strength of laminates under some conditions. This is particularly so in the case of compressively loaded structures as the loss of stiffness may lead to separation of layers, the consequences of which can be catastrophic. Causes of delamination are many. In aerospace applications, this includes manufacturing defects, as well as operationally induced defects such as bird strikes, hits due to runway debris and tool drops. In this work one of the main causes of delamination that is dealt with, is the one that redistribution of the stress state due to some defects all mostly like here is broken single fiber (cutout fiber) in composite system already initiated by one of the above causes. When a laminate is subjected to in-plane tension, the effects of delamination on the stiffness and strength may be characterized by analytical results concerning the onset of delamination growth and its subsequent development. Many of the analytical treatments deal with just free-edge delamination. In mean time the redistribution and the gradient of the stress state in composite system is playing an important role for causing delamination. The main task of this work is to analyze single fiber with and without cutout embedded in matrix. Different FE models were generated, from the results, the redistribution of the stress state around the defected fiber were presented and discussed. Finally concluded remarks were indicated.