Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a...Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a control soil were evaluated based on measurements of the Wien effect in dilute suspensions with a clay concentration of 10 g kg^-1 in four nitrate solutions of 2 × 10^-4/z mol L^-1, where z is the cation valence, and a nitric acid solution of 3 × 10^-5 mol L^-1, Field strengths ranging from 15 to 230 kV cm^-1 were applied for measuring the electrical conductivities (ECs) of the suspensions. The mean free binding energies between the various cations and all of the soils determined from exchange equilibrium increased in the order: Na^+ 〈 Cd^2+ 〈 Cu^2+ 〈 Pb^2+. In general, the ECs of the suspensions in the sodium nitrate solution were smaller than those of the suspensions in the heavy metal solutions because of the lower electrophoretic mobility of sodium compared to the divalent cations. In terms of relative electrical conductivity-field strength relationships, relative electrical conductivity (REC) of suspensions containing various cations at field strengths larger than about 50 kV cm^-1 were in the descending order: Na^+ 〉 Cu^2+ 〉 Cd^2+ 〉 Pb^2+ for all tested soils. A characteristic parameter of the REC-field strength curves, AREC200, REC at a field strength of 200 kV cm^-1 minus that at the local minimum of the concave segment of the REC-field strength curves, characterized the strength of adsorption of the cations stripped off by the applied strong electrical field, and for all soils the values of AREC200 were generally in the order: Na^+ 〈 Cu^2+ ≤ Cd^2+ 〈 Pb^2+.展开更多
A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried ou...A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground and some bound-excited states are obtained as a function of the applied magnetic field strength. Detailed calculations of the binding energies for a number of low-lying states show that for field strength less than B = 2.1 T, the D center confined in a quantum dot possesses two bound states, for 2.1 〈 B 〈 2.4 T, there exist three bound states, etc. Further relevant characteristics of the D- center quantum dots in magnetic fields are provided.展开更多
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field.The quantum well geometry dependence of spin splitting is studied w...We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field.The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included.The results show that the structure of quantum well plays an important role in spin splitting.The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different.The origin of the distinction is discussed in this work.展开更多
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410808)the National Natural Science Foundation of China (No. 40401030)
文摘Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a control soil were evaluated based on measurements of the Wien effect in dilute suspensions with a clay concentration of 10 g kg^-1 in four nitrate solutions of 2 × 10^-4/z mol L^-1, where z is the cation valence, and a nitric acid solution of 3 × 10^-5 mol L^-1, Field strengths ranging from 15 to 230 kV cm^-1 were applied for measuring the electrical conductivities (ECs) of the suspensions. The mean free binding energies between the various cations and all of the soils determined from exchange equilibrium increased in the order: Na^+ 〈 Cd^2+ 〈 Cu^2+ 〈 Pb^2+. In general, the ECs of the suspensions in the sodium nitrate solution were smaller than those of the suspensions in the heavy metal solutions because of the lower electrophoretic mobility of sodium compared to the divalent cations. In terms of relative electrical conductivity-field strength relationships, relative electrical conductivity (REC) of suspensions containing various cations at field strengths larger than about 50 kV cm^-1 were in the descending order: Na^+ 〉 Cu^2+ 〉 Cd^2+ 〉 Pb^2+ for all tested soils. A characteristic parameter of the REC-field strength curves, AREC200, REC at a field strength of 200 kV cm^-1 minus that at the local minimum of the concave segment of the REC-field strength curves, characterized the strength of adsorption of the cations stripped off by the applied strong electrical field, and for all soils the values of AREC200 were generally in the order: Na^+ 〈 Cu^2+ ≤ Cd^2+ 〈 Pb^2+.
基金supported by National Natural Science Foundation of China under Grant No. 10775035
文摘A investigation of the properties of the bound states of D^- centers confined in a parabolic quantum dot has been performed for the case with the presence of a perpendicular magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. The binding energies of the ground and some bound-excited states are obtained as a function of the applied magnetic field strength. Detailed calculations of the binding energies for a number of low-lying states show that for field strength less than B = 2.1 T, the D center confined in a quantum dot possesses two bound states, for 2.1 〈 B 〈 2.4 T, there exist three bound states, etc. Further relevant characteristics of the D- center quantum dots in magnetic fields are provided.
基金Supported by Scientific Research Fund of Zhejiang Provincial Education Department,China under Grant No. Y201120799Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Science
文摘We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field.The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included.The results show that the structure of quantum well plays an important role in spin splitting.The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different.The origin of the distinction is discussed in this work.