[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflo...[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.展开更多
In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied...In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied in neutron stars. We calculate the energy gap of A hyperons and investigate the effects of the ^1S0 superfluidity (SF) of A hyperons on the Y-DURCA processes. The calculated results are in line with the recent experimental data △ BAA ~ 1.01 ±0.20-0.11^+0.18 MeV. The results indicate that the ^1S0 SF of A hyperons exists in most density ranges of happening the two reactions. The theoretical cooling curves are in agreement with observation data.展开更多
A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at whi...A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.展开更多
基金Supported by the National Natural Science Foundation of China(30660036 )the Natural Science Foundation of Guangxi Province(0728096) Project of Graduate Student Education Innovation ofGuangxi (2008106020907M266)~~
文摘[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10675024, 11075063the National Fundamental Fund project Subsidy Funds of Personnel Training J0730311
文摘In the framework of the relativistic mean field theory (RMFT), the relativistic energy losses of the direct Urea processes with hyperons (Y-DURCA ) for reactions A → p + e + υe and ≡^-→ A+e+υe are studied in neutron stars. We calculate the energy gap of A hyperons and investigate the effects of the ^1S0 superfluidity (SF) of A hyperons on the Y-DURCA processes. The calculated results are in line with the recent experimental data △ BAA ~ 1.01 ±0.20-0.11^+0.18 MeV. The results indicate that the ^1S0 SF of A hyperons exists in most density ranges of happening the two reactions. The theoretical cooling curves are in agreement with observation data.
基金grateful to the Max Planck Society for continuous support to our research.financial support from ANR(contract TEC 2),the Alexander von Humboldt Foundation,and the PSMN at the Ecole Normale Sup′erieure de Lyon
文摘A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.