Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t...When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.展开更多
The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around...The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.展开更多
In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonan...In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.展开更多
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
基金supported by the AG600 project of AVIC General Huanan Aircraft Industry Co.,Ltd.
文摘When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape.
文摘The morphologies and formation process of Ni-pool defects in WC?8Ni cemented carbides were studied. The SEM images show that Ni-pool generally has two kinds of morphologies: “island” in isolation and “ring” around a new phase. In the obtained samples with “ring-like Ni-pool”, WC, Ni and Ni2W4C (η phase) phases were detected in XRD patterns. Combined with SEM, EDX and XRD results, it is found that the phase in the center of the “ring-like Ni-pool” is Ni2W4C (η phase) and the main chemical components of Ni-pool are Ni, W and C. In addition, the relationships among large size Ni (agglomerated) particles, volatile impurities, pores and carbon content vs forming process of the Ni-pool defects for WC?8Ni cemented carbides are also presented and discussed.
基金Projects(41502327,51474252)supported by the National Natural Science Foundation of ChinaProject(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of China+1 种基金Project(20130162120012)supported by the Special Research Fund for the Doctoral Program of Higher Education of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually.