The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A...The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.展开更多
The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studie...The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.展开更多
A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was inve...A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.展开更多
The hot deformation behavior of GH3535 superalloy was investigated by hot compression tests in the temperature range of 1000-1200 °C and strain rate range of 0.01-50 s-1. The activation energy is about 356.3 k J/...The hot deformation behavior of GH3535 superalloy was investigated by hot compression tests in the temperature range of 1000-1200 °C and strain rate range of 0.01-50 s-1. The activation energy is about 356.3 k J/mol, and the flow curves and processing map were developed on the basis of experimental data. The processing map exhibits a stable domain which occurs in the strain rate range of 0.01-1 s-1 at all the temperatures and a instable domain which occurs in the strain rate range of 1-50 s-1. Microstructural observations reveal that the full dynamic recrystallization(DRX) occurs in the conditions of(1150 °C, 0.01 s-1),(1200 °C, 0.01 s-1) and(1200 °C, 0.1 s-1) with different grain sizes and undissolved carbides. The flow localization and cracks occur in the regime of flow instability.展开更多
The hot compressive deformation of extruded AZ31magnesium alloy with the mass fractions of Al and Zn equal to 3 % and 1 % respectively is studied by a Gleeble-1500D thermal mechanical simulator over the temperature ra...The hot compressive deformation of extruded AZ31magnesium alloy with the mass fractions of Al and Zn equal to 3 % and 1 % respectively is studied by a Gleeble-1500D thermal mechanical simulator over the temperature range from 200 ℃ to 400 ℃ and the strain rate from 10-3 s-1 to 100 s-1. The true stress-strain curves of the strain of 65 % are tested. The deformation activation energy is obtained and the flow stress model is established by analyzing the effects of strain rate and temperature on the flow stress. Zener-Hollomon parameter is introduced to describe the softening behaviors of AZ31 magnesium alloy resulted from dynamic recrystallization during the hot compressive deformation, whose natural logarithm is linear with the critical strain of dynamic recrystallization.展开更多
In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cas...In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.展开更多
The flow behavior and microstructure evolution of AZ91 magnesium alloy during a thermomechanical process, hot compression test, was investigated. The specimens were hot compressed at a temperature ranging from 350 ℃ ...The flow behavior and microstructure evolution of AZ91 magnesium alloy during a thermomechanical process, hot compression test, was investigated. The specimens were hot compressed at a temperature ranging from 350 ℃ to 425 ℃ and at strain rate of 0.1 s-1 to the strains of 0.3, 0.5 and peak. Microstructural evolutions were studied using optical and scanning electron microscopes. The results show that during the compression process, the recrystallized grains nucleate along the pre-existing grain boundaries. The amount of dynamically recrystallized grains is increased with strain in a sigmoid scheme followed by Avrami equation. The size of dynamically recrystallized grains also increases at the beginning and decreases after reaching the maximum value.展开更多
Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the th...Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.展开更多
Solidification or crystallization of phase change emulsion in the form of fine emulsion drops in a direct contact coolant at temperatures below their freezing point was studied. This work is mainly focused on the size...Solidification or crystallization of phase change emulsion in the form of fine emulsion drops in a direct contact coolant at temperatures below their freezing point was studied. This work is mainly focused on the size and shape of the generated partides from phase change emulsified fats. Size of the particles is the major or key factor being considered during their formation, however, other factors that govern the particle size and shape were also observed. The operating parameters of the process were optimized in order to obtain particles of smaller size ranges in the window of current operating conditions. The crystallization of complex emulsion maffices is very difficult to control in the bulk at desired requirement. Hence, the emulsion drop to particle formation has advan- tage in comparison with the bulk solidification or crystallization. The main objective of this work is to achieve spherical emulsion particles in a direct contact cooling system. Parameters like: stat)ility, characterization, viscos- ity, and the effect of different energy inputs were examined. Moreover, the effects of the capillary size, interracial tension, temperature of the emulsion on the particle size were also monitrored.展开更多
Microencapsulated n-alkanes as energy- storage materials have promising application prospects. The ndcrocapsules containing 100 - 50 wt% of n - octadecane, 0 -20 wt% of paraffin and 0 - 30 wt% of cyclohexane were synt...Microencapsulated n-alkanes as energy- storage materials have promising application prospects. The ndcrocapsules containing 100 - 50 wt% of n - octadecane, 0 -20 wt% of paraffin and 0 - 30 wt% of cyclohexane were synthesized by in-situ polymerization using melamine- formaldehyde polymer as shell. Cyclohexane was removed after heat-treated the microcapsules at 100℃. The morphologies, cell parameters, phase change properties, thermal stable temperatures of these microcapsules were examined. The diameters of these microcapsules are lower than 5 μm. The effect of paraffin in the microcapsules on the cell parameters of n-octadecane is negligible. The paraff'm is effectively used as a nucleating agent to decrease the degree of supercooling. The melting enthalpy is decreased from 132 J/g to 111 J/g due to the increase of the cyclohexane contents. The thermal stable temperature is enhanced 6 - 16℃ after heat-treated the microcapsules at 160℃ for 30 min.展开更多
The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimate...The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.展开更多
A mononuclear chiral copper(ll) complex, [Cu(RRchxn)2(C(CN)3)2]'H20 (RRchxn = (1R, 2R)-diaminocyclohexane) (RRchxnH), and its deuterated compound, [Cu(RRchxn)2(C(CN)3)z].D20 (RRchxnD), and their...A mononuclear chiral copper(ll) complex, [Cu(RRchxn)2(C(CN)3)2]'H20 (RRchxn = (1R, 2R)-diaminocyclohexane) (RRchxnH), and its deuterated compound, [Cu(RRchxn)2(C(CN)3)z].D20 (RRchxnD), and their isomers, [Cu(trchxn)2(C(CN)3)2]'H20 (trchxn = trans-l,2-diaminocyclohexane) (trchxnH) and [Cu(trchxn)2(C(CN)3)2]'D20 (trchxnD) have been prepared and characterized by means of 1R (infrared), electronic, and CD (circular dichroism) spectra, magnetic susceptibility, and variable-temperature X-ray crystallography as single crystals or powder. Interestingly, depending on grain size of samples, RRchxnH exhibits the monoclinic form and the orthorhombic form, which are distinguished by systematic absence and powder XRD (X-ray diffraction) patterns clearly. Although single crystals did not exhibit phase transition, powder XRD patterns of RRchxnH and weakly hydrogen bonded RRchxnD emerged low-temperature phase of monoclinic in the orthorhombic patterns only around 200-220 K. However, as a control, powder XRD patterns of both trchxnH and trchxnD did not exhibit such phase transition clearly.展开更多
This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal contr...This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.展开更多
The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the ...The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.展开更多
Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large a...Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large and homogeneous strain on these 2D materials,including the typical semiconductor MoS_(2),remains cumbersome.Here we report a facile strategy for the fabrication of highly strained MoS_(2) via chalcogenide substitution reaction(CSR)of MoTe_(2) with lattice inheritance.The MoS_(2)resulting from the sulfurized MoTe_(2) sustains ultra large in-plane strain(approaching its strength limit~10%)with great homogeneity.Furthermore,the strain can be deterministically and continuously tuned to~1.5%by simply varying the processing temperature.Thanks to the fine control of our CSR process,we demonstrate a heterostructure of strained MoS_(2)/MoTe_(2)with abrupt interface.Finally,we verify that such a large strain potentially allows the modulation of MoS_(2) bandgap over an ultra-broad range(~1 e V).Our controllable CSR strategy paves the way for the fabrication of highly strained 2D materials for applications in devices.展开更多
Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu conte...Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu content. The crystallization enthalpy increases with increasing excess free volume. The characteristic temperatures of the tensile samples can surpass those of the as-cast ones under a critical heating rate which differs in the Cu content. The increase of the excess free volume significantly influences the glass transition and crystallization procedures.展开更多
文摘The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.
文摘The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.
文摘A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.
基金Project(XDA02040000)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences
文摘The hot deformation behavior of GH3535 superalloy was investigated by hot compression tests in the temperature range of 1000-1200 °C and strain rate range of 0.01-50 s-1. The activation energy is about 356.3 k J/mol, and the flow curves and processing map were developed on the basis of experimental data. The processing map exhibits a stable domain which occurs in the strain rate range of 0.01-1 s-1 at all the temperatures and a instable domain which occurs in the strain rate range of 1-50 s-1. Microstructural observations reveal that the full dynamic recrystallization(DRX) occurs in the conditions of(1150 °C, 0.01 s-1),(1200 °C, 0.01 s-1) and(1200 °C, 0.1 s-1) with different grain sizes and undissolved carbides. The flow localization and cracks occur in the regime of flow instability.
基金Funded by the National "863" Foundation (Grant No. 2001AA351050)
文摘The hot compressive deformation of extruded AZ31magnesium alloy with the mass fractions of Al and Zn equal to 3 % and 1 % respectively is studied by a Gleeble-1500D thermal mechanical simulator over the temperature range from 200 ℃ to 400 ℃ and the strain rate from 10-3 s-1 to 100 s-1. The true stress-strain curves of the strain of 65 % are tested. The deformation activation energy is obtained and the flow stress model is established by analyzing the effects of strain rate and temperature on the flow stress. Zener-Hollomon parameter is introduced to describe the softening behaviors of AZ31 magnesium alloy resulted from dynamic recrystallization during the hot compressive deformation, whose natural logarithm is linear with the critical strain of dynamic recrystallization.
基金Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of ChinaProject supported by Youth Fund Project of GRINM Group Co.,Ltd.,China。
文摘In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.
文摘The flow behavior and microstructure evolution of AZ91 magnesium alloy during a thermomechanical process, hot compression test, was investigated. The specimens were hot compressed at a temperature ranging from 350 ℃ to 425 ℃ and at strain rate of 0.1 s-1 to the strains of 0.3, 0.5 and peak. Microstructural evolutions were studied using optical and scanning electron microscopes. The results show that during the compression process, the recrystallized grains nucleate along the pre-existing grain boundaries. The amount of dynamically recrystallized grains is increased with strain in a sigmoid scheme followed by Avrami equation. The size of dynamically recrystallized grains also increases at the beginning and decreases after reaching the maximum value.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R28)the National Basic Research Program of China(2013CB733602)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(21390204)the National Natural Science Foundation of China(21636003,21506090)Open Fund by Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals(JSBGFC14005)Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.
基金the Department of Chemical Engineering,COMSATS Institute of Information Technology,Lahore,Pakistan,for relieving them from their duties,and Higher Education Commission,Pakistan(A/07/96851)for providing the financial assistance to carry out Ph D study in cooperation with the German Academic Exchange Service(DAAD)
文摘Solidification or crystallization of phase change emulsion in the form of fine emulsion drops in a direct contact coolant at temperatures below their freezing point was studied. This work is mainly focused on the size and shape of the generated partides from phase change emulsified fats. Size of the particles is the major or key factor being considered during their formation, however, other factors that govern the particle size and shape were also observed. The operating parameters of the process were optimized in order to obtain particles of smaller size ranges in the window of current operating conditions. The crystallization of complex emulsion maffices is very difficult to control in the bulk at desired requirement. Hence, the emulsion drop to particle formation has advan- tage in comparison with the bulk solidification or crystallization. The main objective of this work is to achieve spherical emulsion particles in a direct contact cooling system. Parameters like: stat)ility, characterization, viscos- ity, and the effect of different energy inputs were examined. Moreover, the effects of the capillary size, interracial tension, temperature of the emulsion on the particle size were also monitrored.
基金National Natural Science Foundation of China (No.50573058)Specialized Research Foundation for the Doctoral Program of Higher Education (No.20050058004)
文摘Microencapsulated n-alkanes as energy- storage materials have promising application prospects. The ndcrocapsules containing 100 - 50 wt% of n - octadecane, 0 -20 wt% of paraffin and 0 - 30 wt% of cyclohexane were synthesized by in-situ polymerization using melamine- formaldehyde polymer as shell. Cyclohexane was removed after heat-treated the microcapsules at 100℃. The morphologies, cell parameters, phase change properties, thermal stable temperatures of these microcapsules were examined. The diameters of these microcapsules are lower than 5 μm. The effect of paraffin in the microcapsules on the cell parameters of n-octadecane is negligible. The paraff'm is effectively used as a nucleating agent to decrease the degree of supercooling. The melting enthalpy is decreased from 132 J/g to 111 J/g due to the increase of the cyclohexane contents. The thermal stable temperature is enhanced 6 - 16℃ after heat-treated the microcapsules at 160℃ for 30 min.
基金Supported by Project of the Foundation of China Geological Survey(No.1212010071012)supported by the foundation of China Geological Survey Project(1212010071012)
文摘The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.
文摘A mononuclear chiral copper(ll) complex, [Cu(RRchxn)2(C(CN)3)2]'H20 (RRchxn = (1R, 2R)-diaminocyclohexane) (RRchxnH), and its deuterated compound, [Cu(RRchxn)2(C(CN)3)z].D20 (RRchxnD), and their isomers, [Cu(trchxn)2(C(CN)3)2]'H20 (trchxn = trans-l,2-diaminocyclohexane) (trchxnH) and [Cu(trchxn)2(C(CN)3)2]'D20 (trchxnD) have been prepared and characterized by means of 1R (infrared), electronic, and CD (circular dichroism) spectra, magnetic susceptibility, and variable-temperature X-ray crystallography as single crystals or powder. Interestingly, depending on grain size of samples, RRchxnH exhibits the monoclinic form and the orthorhombic form, which are distinguished by systematic absence and powder XRD (X-ray diffraction) patterns clearly. Although single crystals did not exhibit phase transition, powder XRD patterns of RRchxnH and weakly hydrogen bonded RRchxnD emerged low-temperature phase of monoclinic in the orthorhombic patterns only around 200-220 K. However, as a control, powder XRD patterns of both trchxnH and trchxnD did not exhibit such phase transition clearly.
文摘This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.
基金supported by the National Basic Research Program of China (2016YFA0202400 and 2015CB932200)the National Natural Science Foundation of China (21403247)+2 种基金the External Cooperation Program of BIC, Distinguished Youth Foundation of Anhui Province (1708085J09)Chinese Academy of Sciences (GJHZ1607)STS project of Chinese Academy of Sciences (KFJ-SW-STS-152)
文摘The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.
基金supported by the National Natural Science Foundation of China(21825103,52001165)Natural Science Foundation of Hubei Province(2019CFA002)+2 种基金Natural Science Foundation of Jiangsu Province(BK20200475)the Fundamental Research Funds for the Central Universities(2019kfy XMBZ018,30921011215)supports from Analytical and Testing Center in Huazhong University of Science and Technology as well as Nanostructure Research Center(NRC)supported by the Fundamental Research Funds for the Central Universities(WUT:2019III012GX,2020III002GX)。
文摘Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large and homogeneous strain on these 2D materials,including the typical semiconductor MoS_(2),remains cumbersome.Here we report a facile strategy for the fabrication of highly strained MoS_(2) via chalcogenide substitution reaction(CSR)of MoTe_(2) with lattice inheritance.The MoS_(2)resulting from the sulfurized MoTe_(2) sustains ultra large in-plane strain(approaching its strength limit~10%)with great homogeneity.Furthermore,the strain can be deterministically and continuously tuned to~1.5%by simply varying the processing temperature.Thanks to the fine control of our CSR process,we demonstrate a heterostructure of strained MoS_(2)/MoTe_(2)with abrupt interface.Finally,we verify that such a large strain potentially allows the modulation of MoS_(2) bandgap over an ultra-broad range(~1 e V).Our controllable CSR strategy paves the way for the fabrication of highly strained 2D materials for applications in devices.
基金the National Natural Science Foundation (Grant No. 50874045)the Scientific Research Fund of the Hunan Provincial Education Department (Grant No. 10A044)
文摘Structural and thermal sensitivity of Cu(60-x)Zr(30+x) Ti 10 (x=0,5,and 10 at%) amorphous alloys to the application of tension was investigated. The structural sensitivity to tension decreases with increasing Cu content. The crystallization enthalpy increases with increasing excess free volume. The characteristic temperatures of the tensile samples can surpass those of the as-cast ones under a critical heating rate which differs in the Cu content. The increase of the excess free volume significantly influences the glass transition and crystallization procedures.