A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Nume...A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.展开更多
The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and...The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.展开更多
In order to understand the effect of geometric parameters and axial magnetic field on buoyant-thermocapillary convection during detached solidification, a series of threedimensional numerical simulations were conducte...In order to understand the effect of geometric parameters and axial magnetic field on buoyant-thermocapillary convection during detached solidification, a series of threedimensional numerical simulations were conducted by the finite-difference method. The results indicate that the stable flow is observed when the Marangoni number (Ma) is small; however, when the value of Ma increases and exceeds a threshold value, the stable steady flow transits to be unstable flow. As the height of the melt increases, the flow is enhanced at first and then gets weakened. As the width of gap decreases gradually, the strength of flow is enhanced. The approach of using axial magnetic field is an effective way to suppress the buoyant-thermocapillary convection. As the magnetic field strength increases, the inhibition is enhanced. The critical Marangoni number increases slightly with a greater melt height, a narrower width of gap, and a more strength of magnetic field.展开更多
A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is perfo...A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.展开更多
This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis ...This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose...The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis展开更多
This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obt...This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.展开更多
The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found...The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys- talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.展开更多
Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect ...Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.展开更多
Cd3As2 is an important II-V group semiconductor with excellent electrical and optoelectronic properties. In this work, we report the large scale growth of single-crystalline Cd3As2 nanowires via a simple chemical vapo...Cd3As2 is an important II-V group semiconductor with excellent electrical and optoelectronic properties. In this work, we report the large scale growth of single-crystalline Cd3As2 nanowires via a simple chemical vapor deposition method. Single nanowire field-effect transistors were fabricated with the as-grown Cd3As2 nanowires, which exhibited a high lon/loff of 104 with a hole mobility of 6.02 cm2V-1s-1. Photoresponse properties of the Cd3As2 nanowires were also investigated by illuminating the nanowires with white light by varying intensities. Besides, flexible photodetectors were also fabricated on flexible PET substrate, showing excellent mechanical stablility and flexible electro-optical properties under various bending states and bending cycles. Our results indicate that Cd3As2 nanowires can be the basic material of next generation electronic and ootoelectronic devices.展开更多
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The inte...Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.展开更多
We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe ...We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-lmmunoglobulin G/anti-lgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/rnL level, which is among the best of,'eported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.展开更多
The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achi...The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:ybB,Er3. UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (〉 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metaMnduced UCL enhancement systems.展开更多
Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small m...Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.展开更多
基金Project(51276203)supported by the National Natural Science Foundation of China
文摘A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.
基金This work is supported by the National Natural Science Foundation of China (No.11402210), the Natural Science Foundation of Shanxi Province (No.2012011019-2), and the Doctoral Fund of Taiyuan University of Science and Technology (No.20152024).
文摘The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.
基金Project(51076173)supported by the National Natural Science Foundation of China
文摘In order to understand the effect of geometric parameters and axial magnetic field on buoyant-thermocapillary convection during detached solidification, a series of threedimensional numerical simulations were conducted by the finite-difference method. The results indicate that the stable flow is observed when the Marangoni number (Ma) is small; however, when the value of Ma increases and exceeds a threshold value, the stable steady flow transits to be unstable flow. As the height of the melt increases, the flow is enhanced at first and then gets weakened. As the width of gap decreases gradually, the strength of flow is enhanced. The approach of using axial magnetic field is an effective way to suppress the buoyant-thermocapillary convection. As the magnetic field strength increases, the inhibition is enhanced. The critical Marangoni number increases slightly with a greater melt height, a narrower width of gap, and a more strength of magnetic field.
基金the financial support from the National Natural Science Foundation of China (Nos. U2141215, 52105384 and 52075325)the support of Materials Genome Initiative Center, Shanghai Jiao Tong University, China。
文摘A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.
文摘This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金Supported by the National Natural Science Foundation of China (20976130 and 20806057), National Science and Technology Pillar Program of China (2007BAD42B02), Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-08-0386), and the R&D program of Tianjin Binhai New Area (2010-BK17C004)..
文摘The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis
文摘This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.
基金ACKNOWLEDGMENTS This work was supported by the National Nature Science Foundation of China (No.50171033), the National Key Project of Fundamental Research of China (No.2005CB623605), and the Scientific Research Foundation for the Doctor of Hefei University of Technology (No.035032).
文摘The effects of magnetic field annealing on the properties of Fe48Co52 alloy nanowire arrays with various interwire distances (Di=30-60 nm) and wire diameters (Dw=22-46 nm) were investigated in detail. It was found that the array's best annealing temperature and crys- talline structure did not show any apparent dependence on the treatment of applying a 3 kOe magnetic field along the wire during the annealing process. For arrays with small Dw or with large Di, the treatment of magnetic field annealing also had no obvious influence on their magnetic performances. However, such a magnetic field annealing constrained the shift of the easy magnetization direction and improved the coercivity and the squareness obviously for arrays with large Dw or with small Di. The difference in the intensity of the effective anisotropic field within the arrays was believed to be responsible for this different variation of the array's magnetic properties after magnetic field annealing.
基金Supported by the National Defense Preresearch Fund Program(No.99J8.1.1.DZD132)
文摘Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.
基金supported by the National Natural Science Foundation of China(Grant Nos.61377033 and 91123008)
文摘Cd3As2 is an important II-V group semiconductor with excellent electrical and optoelectronic properties. In this work, we report the large scale growth of single-crystalline Cd3As2 nanowires via a simple chemical vapor deposition method. Single nanowire field-effect transistors were fabricated with the as-grown Cd3As2 nanowires, which exhibited a high lon/loff of 104 with a hole mobility of 6.02 cm2V-1s-1. Photoresponse properties of the Cd3As2 nanowires were also investigated by illuminating the nanowires with white light by varying intensities. Besides, flexible photodetectors were also fabricated on flexible PET substrate, showing excellent mechanical stablility and flexible electro-optical properties under various bending states and bending cycles. Our results indicate that Cd3As2 nanowires can be the basic material of next generation electronic and ootoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274167 and 51174168)the Northwestern Polytechnical University Foundation for the Fundamental Research(Grant No.JC20120222)
文摘Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.
基金Financial support for this work was provided by the USA National Science Foundation (NSF) (Nos. CMMI- 0900509, CBET-0803142, and ECCS-0708998). Graphene oxide samples were supplied by Prof. Rodney S. Ruoff. The authors thank Dr. Heather A. Owen for technical support with SEM, and Dr. Leonidas E. Ocola for assistance in the electrode fabrication. The e-beam lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory, which is supported by the USA Department of Energy (No. DE- AC02-06CH11357). The SEM imaging was conducted at the Electron Microscope Laboratory of University of Wisconsin-Milwaukee.
文摘We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)-antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-lmmunoglobulin G/anti-lgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/rnL level, which is among the best of,'eported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.
文摘The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:ybB,Er3. UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (〉 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metaMnduced UCL enhancement systems.
基金supported by the National Basic Research Program of China(2013CB933501)the National Natural Science Foundation of China
文摘Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.