The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA ...Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.展开更多
In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based m...In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kine...The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.展开更多
Experiments were performed on the crystallization of a CuSO4 solution upon the action of the temperature gradient with the forming of mono crystals three wedges crystal system (prisms). We found that the fractal dim...Experiments were performed on the crystallization of a CuSO4 solution upon the action of the temperature gradient with the forming of mono crystals three wedges crystal system (prisms). We found that the fractal dimension of crystals equals 2.45, which is consistent with the literature data. Crystal growth is represented as the N-rd translation of each side of the crystal lattice with its own speed and with relation to the formation of similar structures--fractals. A mathematical model of ultrasonic crystallization of a CuSO4 solution was proposed. The model is based on the combined use of differential transport equations of momentum, mass, energy and sound waves and a method of similarity and dimensional analysis. The calculated formulas for the concentration of Ccr, the equivalent diameter of the formed crystals dcr and the intensity of internal energy source Ф, associated with the interaction of crystals with the hydro mechanical, heat and sound fields were obtained. Fractal interpretation of ultrasonic crystallization of the CuSO4 solution was made. It was found that on the growth of crystal size d^r directly affects translation N, i.e., an increase in the number of sets of crystals of infinitely small size e, correspond to the size of the crystal lattice. In turn, translation of crystals depends on the geometry of the crystallizer and the physical parameters of external force fields, acting on the CuSO4 solution. A connection of results of the mathematical modeling with the results of fractal analysis of the ultrasonic crystallization of solutions was established.展开更多
In modern days, biodegradable polymeric matrix used as the kingpin of local drug delivery system is in the center of attention. This work is concentrated on the formulation of mathematical model elucidating degradatio...In modern days, biodegradable polymeric matrix used as the kingpin of local drug delivery system is in the center of attention. This work is concentrated on the formulation of mathematical model elucidating degradation of drug-loaded polymeric matrix followed by drug release to the adjacent biological tissues. Polymeric degradation is penciled with mass conservation equations. Drug release phenomenon is modeled by considering solubilization dynamics of drug particles, diffusion of the solubilized drug through polymeric matrix along with reversible dissociation/recrystallization process. In the tissue phase, reversible dissociation/association along with internalization processes of drug are taken into account. For this, a two-phase spatio-temporal model is postu- lated, which has ensued to a system of partial differential equations. They are solved analytically with appropriate choice of initial, interface and boundary conditions. In order to reflect the potency of the advocated model, the simulated results are analogized with corresponding experimental data and found laudable agreement so as to validate the applicability of the model considered. This model seems to foster the delicacy of the mantle enacted by important drug kinetic parameters such as diffusion coefficients, mass transfer coefficients, particle binding and internalization parameters, which is illustrated through local sensitivity analysis.展开更多
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
基金Supported by Inner Mongolia Natural Science Foundation(200711020112)Innovation Fundation of Inner Mongolia University of Science and Technology (2009NC064)~~
文摘Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.
基金Project(51431008)supported by the National Natural Science Foundation of ChinaProjects(2017YFB0703001,2017YFB0305100)supported by the National Key Research and Development Program of China
文摘In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
文摘The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.
文摘Experiments were performed on the crystallization of a CuSO4 solution upon the action of the temperature gradient with the forming of mono crystals three wedges crystal system (prisms). We found that the fractal dimension of crystals equals 2.45, which is consistent with the literature data. Crystal growth is represented as the N-rd translation of each side of the crystal lattice with its own speed and with relation to the formation of similar structures--fractals. A mathematical model of ultrasonic crystallization of a CuSO4 solution was proposed. The model is based on the combined use of differential transport equations of momentum, mass, energy and sound waves and a method of similarity and dimensional analysis. The calculated formulas for the concentration of Ccr, the equivalent diameter of the formed crystals dcr and the intensity of internal energy source Ф, associated with the interaction of crystals with the hydro mechanical, heat and sound fields were obtained. Fractal interpretation of ultrasonic crystallization of the CuSO4 solution was made. It was found that on the growth of crystal size d^r directly affects translation N, i.e., an increase in the number of sets of crystals of infinitely small size e, correspond to the size of the crystal lattice. In turn, translation of crystals depends on the geometry of the crystallizer and the physical parameters of external force fields, acting on the CuSO4 solution. A connection of results of the mathematical modeling with the results of fractal analysis of the ultrasonic crystallization of solutions was established.
文摘In modern days, biodegradable polymeric matrix used as the kingpin of local drug delivery system is in the center of attention. This work is concentrated on the formulation of mathematical model elucidating degradation of drug-loaded polymeric matrix followed by drug release to the adjacent biological tissues. Polymeric degradation is penciled with mass conservation equations. Drug release phenomenon is modeled by considering solubilization dynamics of drug particles, diffusion of the solubilized drug through polymeric matrix along with reversible dissociation/recrystallization process. In the tissue phase, reversible dissociation/association along with internalization processes of drug are taken into account. For this, a two-phase spatio-temporal model is postu- lated, which has ensued to a system of partial differential equations. They are solved analytically with appropriate choice of initial, interface and boundary conditions. In order to reflect the potency of the advocated model, the simulated results are analogized with corresponding experimental data and found laudable agreement so as to validate the applicability of the model considered. This model seems to foster the delicacy of the mantle enacted by important drug kinetic parameters such as diffusion coefficients, mass transfer coefficients, particle binding and internalization parameters, which is illustrated through local sensitivity analysis.