The effects of additive ethylenediaminetetraacetic acid (EDTA) on crystallization process were investigated by the induction time of MgSO 4-NaOH system. Nucleation and growth rates, growth mechanism and particle size ...The effects of additive ethylenediaminetetraacetic acid (EDTA) on crystallization process were investigated by the induction time of MgSO 4-NaOH system. Nucleation and growth rates, growth mechanism and particle size distribution of magnesium hydroxide precipitation were involved with. The induction time in unseeded and seeded precipitation of magnesium hydroxide with and without additive EDTA was measured. The conductivity method was used to determine the induction period. Theoretical relations of the induction time and supersaturation ratio for different growth mechanisms and a combined analysis on the induction time were applied to determine nucleation and growth rates. The growth mechanism of magnesium hydroxide precipitation was disclosed by analyzing the experimental data with and without additive. The analysis on induction time indicated that additive EDTA had a significant influence on both nucleation and growth of magnesium hydroxide precipitation. The mechanism underlying the effect of EDTA on crystal growth was 2-dimension nucleation-mediated growth model.展开更多
6-aminopenicillanic acid (6-APA) crystals obtained under different physical and chemical conditions of the solutions may present different habits. The habits of diamond-shaped plates are desirable compared with other ...6-aminopenicillanic acid (6-APA) crystals obtained under different physical and chemical conditions of the solutions may present different habits. The habits of diamond-shaped plates are desirable compared with other habits of 6-APA crystals. To obtain ideal 6-APA crystals, the effects of the mixed solvents and additives on 6-APA crystal habits were investigated. Ethanol or acetone was used as the organic solvent, and impurities existing in the 6-APA purification process were used as the additives. 6-APA growth habits were changed when the concentrations of ethanol, acetone or phenyl acetic acid were increased to exceed their critical concentration. The observed results show that the dominant face on 6-APA crystals was identified to be {020}, but the overall habit was controlled by the relative growth rates of the {101} and {002} faces. Crystal growth rates and habits can be appreciably changed by specific adsorption of additives on crystal faces.In some cases solvent molecules can act in a similar way and may be regarded as bulk additives. The effects of additives and organic solvents on 6-APA crystal habits were the results of adsorption effect, which fitted the experimental results quite well.展开更多
The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped b...The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped boron carbide thin film is calculated. Thequantitative calculation value is consistent with the experimentalresults. This theoretical expression is also appropriate to resolvethe optimum doping content for Other electric materials.展开更多
Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanis...Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanism of Mg-calcite mesocrystals in the ocean is not clear yet.We report here the synthesis of corn-like Mg-calcite mesocrystals from pure amorphous calcium carbonate(ACC)via a facile method only by using Ca^(2+)and Mg^(2+).The obtained Mg-calcite is composed of many nanocubes with common crystallographic orientation,which shows very good single crystal feature.In the crystallizing procedure,the ACC nanospheres rapidly agglomerate into Mg-calcite corn-like mesocrystal by oriented attachment(OA)in a certain direction,which belongs to the non-classical nucleation.By this method,the molar ratio of Ca^(2+)and Mg^(2+)plays a vital role in the whole crystallization procedure,which may shed a new light on disclosing the mechanism behind for the effect of seawater in the formation of biological Mg-calcite in nature.展开更多
文摘The effects of additive ethylenediaminetetraacetic acid (EDTA) on crystallization process were investigated by the induction time of MgSO 4-NaOH system. Nucleation and growth rates, growth mechanism and particle size distribution of magnesium hydroxide precipitation were involved with. The induction time in unseeded and seeded precipitation of magnesium hydroxide with and without additive EDTA was measured. The conductivity method was used to determine the induction period. Theoretical relations of the induction time and supersaturation ratio for different growth mechanisms and a combined analysis on the induction time were applied to determine nucleation and growth rates. The growth mechanism of magnesium hydroxide precipitation was disclosed by analyzing the experimental data with and without additive. The analysis on induction time indicated that additive EDTA had a significant influence on both nucleation and growth of magnesium hydroxide precipitation. The mechanism underlying the effect of EDTA on crystal growth was 2-dimension nucleation-mediated growth model.
文摘6-aminopenicillanic acid (6-APA) crystals obtained under different physical and chemical conditions of the solutions may present different habits. The habits of diamond-shaped plates are desirable compared with other habits of 6-APA crystals. To obtain ideal 6-APA crystals, the effects of the mixed solvents and additives on 6-APA crystal habits were investigated. Ethanol or acetone was used as the organic solvent, and impurities existing in the 6-APA purification process were used as the additives. 6-APA growth habits were changed when the concentrations of ethanol, acetone or phenyl acetic acid were increased to exceed their critical concentration. The observed results show that the dominant face on 6-APA crystals was identified to be {020}, but the overall habit was controlled by the relative growth rates of the {101} and {002} faces. Crystal growth rates and habits can be appreciably changed by specific adsorption of additives on crystal faces.In some cases solvent molecules can act in a similar way and may be regarded as bulk additives. The effects of additives and organic solvents on 6-APA crystal habits were the results of adsorption effect, which fitted the experimental results quite well.
文摘The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped boron carbide thin film is calculated. Thequantitative calculation value is consistent with the experimentalresults. This theoretical expression is also appropriate to resolvethe optimum doping content for Other electric materials.
基金the National Natural Science Foundation of China(21701162,21761132008 and 51702312)Anhui Provincial Natural Science Foundation(1808085MB27)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(21521001)the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-SLH036)the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(2015HSC-UE007)。
文摘Magnesium calcite(Mg-calcite)mesocrystal is widespread in the biominerals with specific functions.Until now,it remains challenging to obtain Mg-calcite mesocrystals without organic additives and the formation mechanism of Mg-calcite mesocrystals in the ocean is not clear yet.We report here the synthesis of corn-like Mg-calcite mesocrystals from pure amorphous calcium carbonate(ACC)via a facile method only by using Ca^(2+)and Mg^(2+).The obtained Mg-calcite is composed of many nanocubes with common crystallographic orientation,which shows very good single crystal feature.In the crystallizing procedure,the ACC nanospheres rapidly agglomerate into Mg-calcite corn-like mesocrystal by oriented attachment(OA)in a certain direction,which belongs to the non-classical nucleation.By this method,the molar ratio of Ca^(2+)and Mg^(2+)plays a vital role in the whole crystallization procedure,which may shed a new light on disclosing the mechanism behind for the effect of seawater in the formation of biological Mg-calcite in nature.