X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in ...X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in the rapid cooling process, the titanium phase is anosovite, whose chemical formula is MgnTi(3-n)O5(0n1). In the slow cooling process, when the Mg content is high, anosovite transforms into karrooite MgTi2O5 structure; when the Mg content is low, karrooite MgTi2O5 and rutile TiO2 both exist. The stability of karrooite MgTi2O5 is better than that of anosovite MgnTi(3-n)O5. Slow cooling contributes to the doping of Mg into the anosovite crystal and stabilises the anosovite crystal structure.展开更多
\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid sta...\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid state in its storage time. This laid a foundation for estimating the relative chemical stability of the drug by determination of its decomposition kinetics using TGA. Although the observed thermal decomposition kinetics of CEZ·Na was complex, a conversion level of 1% was chosen for evaluation of the stability of CEZ·Na crystalline since the mechanism here was more likely to be that of the actual product failure. The evaluation results suggested that the α form of CEZ·Na had the best stability and the amorphous one was the least stable one among α form, dehydrated α form and amorphous form.展开更多
The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,...The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.展开更多
Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were inves...Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were investigated.Samples in the deformed state and after various annealing treatments at423?523K(150?250°C)for1h were characterized by TEM and hardness test.The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations.Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied,and no significant grain growth was observed.However,for the dynamic impacted one,recrystallized grains with an average grain size of4.7μm were evolved after annealing at523K(250°C)for1h.It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening,rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum.展开更多
The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives...The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives. The degradation process follows the first-order kinetics. A pH-rate profile exhibits the U-shape and shows the maximum stability of cefixime at pH = 6. The stability in different pure solvents is ranked as acetone 〉 ethanol 〉 methanol 〉 water, while the degradation rate of cefixime exists a maximum at the ratio of 0.6 in water + methanol mixtures. In addition, the degradation rate increases with the temperature increasing and the activation energy of degradation was found to be 27.078 kJ. mol- 1 in acetone + water mixed solvents. The addition of different additives was proven to either inhibit or accelerate the degradation. The degradation products were analyzed using HPLC, LC-MS and infrared spectroscopy, and the possible degradation pathways in acid as well as alkaline environment were proposed to help us understand the degradation behavior of cefixime.展开更多
Silicon thin films with different crystalline ratio(Xc) have been deposited by varying silane content(SC) of reactive gases in the RF-PECVD process.The effects of silane content on performance of the materials and the...Silicon thin films with different crystalline ratio(Xc) have been deposited by varying silane content(SC) of reactive gases in the RF-PECVD process.The effects of silane content on performance of the materials and the relationship between microstructure and opto-electronic properties were studied by means of Raman measurements,photoconductivity(σ_ ph ),and dark conductivity(σ_d),followed by the measurements of light absorption coefficient(α),the product of quantum efficiency,mobility and lifetime (ημτ),before,during and after light soaking,respectively.The results indicate that the microcrystalline silicon near the transition region is suitable to prepare microcrystalline silicon of device grade,and that the amorphous region of the material is responsible to the light induced degradation.展开更多
Protein thermostability is an inherent characteristic of proteins from thermophilic microorganisms,and therefore enables these organisms to survive at extreme temperatures.Although it is well-known that thermostable p...Protein thermostability is an inherent characteristic of proteins from thermophilic microorganisms,and therefore enables these organisms to survive at extreme temperatures.Although it is well-known that thermostable proteins are critical for the growth of thermophilic organisms,the structural basis of protein thermostability is not yet fully understood.The histidine-containing phosphocarrier (HPr) protein,a phosphate shuttle protein in the phosphoenolpyruvate-dependent sugar transport system (PTS) of bacterial species,is an ideal model for investigating protein thermostability with respect to its small size and deficiency in disulphide bonds or cofactors.In this study,the HPr protein from Thermoanaerobacter tengcongensis (TtHPr) is cloned and purified.Crystal structure with good quality has been determined at 2.3 resolution,which provides a firm foundation for exploring the thermostable mechanism.However,it shows that the crystal structure is conserved and no clue can be obtained from this single structure.Furthermore,detailed comparison of sequence and structure with the homologs from mesoor thermophilic bacteria shows no obvious rule for thermostability,but the extra salt-bridge existing only in thermophilic bacteria might be a better explanation for thermostability of HPr.Thus,mutations are performed to interrupt the salt-bridge in HPrs in thermophilic bacteria.Using site-directed mutations and the circular dichroism method,thermostability is evaluated,and the mutational variations are shown to have a faster denaturing rate than for wild-type viruses,indicating that mutations cause instability in the HPrs.Understanding the higher-temperature resistance of thermophilic and hyperthermophilic proteins is essential to studies on protein folding and stability,and is critical in engineering efficient enzymes that can work at a high temperature.展开更多
基金Project(51090385)supported by the National Natural Science Foundation of China
文摘X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in the rapid cooling process, the titanium phase is anosovite, whose chemical formula is MgnTi(3-n)O5(0n1). In the slow cooling process, when the Mg content is high, anosovite transforms into karrooite MgTi2O5 structure; when the Mg content is low, karrooite MgTi2O5 and rutile TiO2 both exist. The stability of karrooite MgTi2O5 is better than that of anosovite MgnTi(3-n)O5. Slow cooling contributes to the doping of Mg into the anosovite crystal and stabilises the anosovite crystal structure.
文摘\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid state in its storage time. This laid a foundation for estimating the relative chemical stability of the drug by determination of its decomposition kinetics using TGA. Although the observed thermal decomposition kinetics of CEZ·Na was complex, a conversion level of 1% was chosen for evaluation of the stability of CEZ·Na crystalline since the mechanism here was more likely to be that of the actual product failure. The evaluation results suggested that the α form of CEZ·Na had the best stability and the amorphous one was the least stable one among α form, dehydrated α form and amorphous form.
基金Project(2018YFC1901903)supported by the National Key R&D Program of ChinaProjects(22078055,52074083,51674075)supported by the National Natural Science Foundation of China。
文摘The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.
基金Projects(51274245,51574290,U1330126) supported by the National Natural Science Foundation of ChinaProject supported by the Opening Fund of State Key Laboratory of Nonlinear Mechanics,China
文摘Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were investigated.Samples in the deformed state and after various annealing treatments at423?523K(150?250°C)for1h were characterized by TEM and hardness test.The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations.Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied,and no significant grain growth was observed.However,for the dynamic impacted one,recrystallized grains with an average grain size of4.7μm were evolved after annealing at523K(250°C)for1h.It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening,rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum.
基金Supported by the National Natural Science Foundation of China(81361140344 and21376164)National High Technology Reseach and Development Program of China(863Program,2015AA021002)Major National Scientific Instrument Development Project(21527812)
文摘The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives. The degradation process follows the first-order kinetics. A pH-rate profile exhibits the U-shape and shows the maximum stability of cefixime at pH = 6. The stability in different pure solvents is ranked as acetone 〉 ethanol 〉 methanol 〉 water, while the degradation rate of cefixime exists a maximum at the ratio of 0.6 in water + methanol mixtures. In addition, the degradation rate increases with the temperature increasing and the activation energy of degradation was found to be 27.078 kJ. mol- 1 in acetone + water mixed solvents. The addition of different additives was proven to either inhibit or accelerate the degradation. The degradation products were analyzed using HPLC, LC-MS and infrared spectroscopy, and the possible degradation pathways in acid as well as alkaline environment were proposed to help us understand the degradation behavior of cefixime.
基金This workis supported by the State Key Development Programfor Basic Research of China ( Grant No. G2000028202 ,G2000028203)the Key Project of Education Bureau (Grant No.02167)the State Key Development Program(2002303261)
文摘Silicon thin films with different crystalline ratio(Xc) have been deposited by varying silane content(SC) of reactive gases in the RF-PECVD process.The effects of silane content on performance of the materials and the relationship between microstructure and opto-electronic properties were studied by means of Raman measurements,photoconductivity(σ_ ph ),and dark conductivity(σ_d),followed by the measurements of light absorption coefficient(α),the product of quantum efficiency,mobility and lifetime (ημτ),before,during and after light soaking,respectively.The results indicate that the microcrystalline silicon near the transition region is suitable to prepare microcrystalline silicon of device grade,and that the amorphous region of the material is responsible to the light induced degradation.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006BAD06A04) from Ministry of Science and Technology of ChinaGeorge F. Gao is a leading principal investigator of the Innovative Research Group of the National Natural Science Foundation of China (Grant No. 80121003)
文摘Protein thermostability is an inherent characteristic of proteins from thermophilic microorganisms,and therefore enables these organisms to survive at extreme temperatures.Although it is well-known that thermostable proteins are critical for the growth of thermophilic organisms,the structural basis of protein thermostability is not yet fully understood.The histidine-containing phosphocarrier (HPr) protein,a phosphate shuttle protein in the phosphoenolpyruvate-dependent sugar transport system (PTS) of bacterial species,is an ideal model for investigating protein thermostability with respect to its small size and deficiency in disulphide bonds or cofactors.In this study,the HPr protein from Thermoanaerobacter tengcongensis (TtHPr) is cloned and purified.Crystal structure with good quality has been determined at 2.3 resolution,which provides a firm foundation for exploring the thermostable mechanism.However,it shows that the crystal structure is conserved and no clue can be obtained from this single structure.Furthermore,detailed comparison of sequence and structure with the homologs from mesoor thermophilic bacteria shows no obvious rule for thermostability,but the extra salt-bridge existing only in thermophilic bacteria might be a better explanation for thermostability of HPr.Thus,mutations are performed to interrupt the salt-bridge in HPrs in thermophilic bacteria.Using site-directed mutations and the circular dichroism method,thermostability is evaluated,and the mutational variations are shown to have a faster denaturing rate than for wild-type viruses,indicating that mutations cause instability in the HPrs.Understanding the higher-temperature resistance of thermophilic and hyperthermophilic proteins is essential to studies on protein folding and stability,and is critical in engineering efficient enzymes that can work at a high temperature.