A SIR model of epidemiological dynamics with stage-structure and a type of nonlinear incidence rate is considered under the assumption that the susceptible individual satisfy the logistic equation. The global attracti...A SIR model of epidemiological dynamics with stage-structure and a type of nonlinear incidence rate is considered under the assumption that the susceptible individual satisfy the logistic equation. The global attractivity of the model is studied using Lyapunov functions and LaSalle's invariance principle. By the uniform persistence theories, the permanence of the system and the existence of the positive equilibrium are obtained. Moreover, by the normal form theory and the center manifold presented by Hassard, a stability and Hopf bifurcation analysis of the system around positive equilibrium from a local perspective are performed. Numerical simulation is carried out to illustrate our results.展开更多
文摘A SIR model of epidemiological dynamics with stage-structure and a type of nonlinear incidence rate is considered under the assumption that the susceptible individual satisfy the logistic equation. The global attractivity of the model is studied using Lyapunov functions and LaSalle's invariance principle. By the uniform persistence theories, the permanence of the system and the existence of the positive equilibrium are obtained. Moreover, by the normal form theory and the center manifold presented by Hassard, a stability and Hopf bifurcation analysis of the system around positive equilibrium from a local perspective are performed. Numerical simulation is carried out to illustrate our results.