Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typical...Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.展开更多
文摘Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.