The recrystallization textures in 95%rolled aluminum sheets with different purities and initial textures were investigated.The effects of recovery levels and the dragging effects induced by impurities on the effective...The recrystallization textures in 95%rolled aluminum sheets with different purities and initial textures were investigated.The effects of recovery levels and the dragging effects induced by impurities on the effective driving force and corresponding behaviors of oriented nucleation and oriented growth during annealing were analyzed.The oriented nucleation is a common behavior in the initial stage of primary recrystallization if the effective driving force in deformed matrix is not too high to reduce the necessity of nucleation period.Oriented growth might appear if the temperature is not too high and the grains,of which the misorientation to matrix is about 40°〈111〉,have enough time and space to expand growth advantages,while certain reduction of effective driving force is also necessary.The recrystallization textures could be changed by controlling initial textures and effective driving forces which can be regulated by recovery levels and dragging effects.展开更多
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves...La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.展开更多
For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1...For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.展开更多
With the rapid development of microelectronics and hardware,the use of ever faster micro processors and new architecture must be continued to meet tomorrow′s computing needs. New processor microarchitectures are need...With the rapid development of microelectronics and hardware,the use of ever faster micro processors and new architecture must be continued to meet tomorrow′s computing needs. New processor microarchitectures are needed to push performance further and to use higher transistor counts effectively.At the same time,aiming at different usages,the processor has been optimized in different aspects,such as high performace,low power consumption,small chip area and high security. SOC (System on chip)and SCMP (Single Chip Multi Processor) constitute the main processor system architecture.展开更多
A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys...A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.展开更多
At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the...At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.展开更多
Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for...Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.展开更多
The combination of batteries and ultracapacitors has become an effective solution to satisfy the requirements of high power density and high energy density for the energy-storage system of electric vehicles.Three aspe...The combination of batteries and ultracapacitors has become an effective solution to satisfy the requirements of high power density and high energy density for the energy-storage system of electric vehicles.Three aspects of such combination efforts were considered for evaluating the four types of hybrid energy-storage system(HESS)topologies.First,a novel optimization framework was proposed and implemented to optimize the voltage level of a battery pack and an ultracapacitor pack for the four types of HESS topologies.During the optimization process,the dynamic programming(DP)algorithm was iteratively applied to determine the optimal control actions.The simulation results with DP were used to evaluate the energy efficiency of different HESS topologies at different voltage levels.Second,the optimized voltage level of the battery and ultracapacitor in each topology indicates that a higher voltage level usually results in a better system performance.The simulation results also illustrate that the optimized rated voltage level of the battery pack is approximately 499.5 V,while for the ultracapacitor pack,the optimized voltage level is at its maximum allowed value.Note that the constraint of the battery voltage is initialized at200–600 V.Third,the control rules for different HESS topologies were obtained through the systematic analysis of the simulation results.In addition,advantages and disadvantages of the four topologies were summarized through evaluation of the efficiency and operating currents of the batteries and the ultracapacitor.展开更多
文摘The recrystallization textures in 95%rolled aluminum sheets with different purities and initial textures were investigated.The effects of recovery levels and the dragging effects induced by impurities on the effective driving force and corresponding behaviors of oriented nucleation and oriented growth during annealing were analyzed.The oriented nucleation is a common behavior in the initial stage of primary recrystallization if the effective driving force in deformed matrix is not too high to reduce the necessity of nucleation period.Oriented growth might appear if the temperature is not too high and the grains,of which the misorientation to matrix is about 40°〈111〉,have enough time and space to expand growth advantages,while certain reduction of effective driving force is also necessary.The recrystallization textures could be changed by controlling initial textures and effective driving forces which can be regulated by recovery levels and dragging effects.
基金Project (51001043) supported by the National Natural Science Foundation of ChinaProject (NCET2011) supported by Program for New Century Excellent Talents in University, China+4 种基金Project (201104390) supported by China Postdoctoral Science Special FoundationProject (20100470990) supported by China Postdoctoral Science FoundationProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, ChinaProject (2011J1003) supported by Baotou Science and Technology Project, ChinaProject (B2010-13) supported by the Doctoral Foundation of Henan Polytechnic University, China
文摘La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.
基金Projects(51161015,50961009) supported by the National Natural Science Foundation of ChinaProject(2011AA03A408) supported by the National High Technology Research and Development Program of ChinaProjects(2011ZD10,2010ZD05) supported by the Natural Science Foundation of Inner Mongolia,China
文摘For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.
文摘With the rapid development of microelectronics and hardware,the use of ever faster micro processors and new architecture must be continued to meet tomorrow′s computing needs. New processor microarchitectures are needed to push performance further and to use higher transistor counts effectively.At the same time,aiming at different usages,the processor has been optimized in different aspects,such as high performace,low power consumption,small chip area and high security. SOC (System on chip)and SCMP (Single Chip Multi Processor) constitute the main processor system architecture.
基金Project(2007AA11A104) supported by the High-tech Research and Development Program of ChinaProject(2009CB220100) supported by the National Basic Research Program of China
文摘A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant No. 70971129) and Soft Science Project (Grant No. 2008041036-02). The authors would like to thank anonymous reviewers for their helpful comments.
文摘At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization.
基金financially supported by the National Key R&D Program of China(2017YFE0127600)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+4 种基金the National Natural Science Foundation of China(21975271)the Key-Area Research and Development Program of Guangdong Province(2020B090919005)Shandong Natural Science Foundation(ZR2020ZD07 and ZR2021QB106)the financial support from the Youth Innovation Promotion Association of CAS(2019214)Shandong Energy Institute(SEI 1202127)。
文摘Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.
基金supported by the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Excellent Young Scholars Research Fund of Beijing Institute of Technologythe National Science & Technology Pillar Program(Grant No.2013BAG05B00)
文摘The combination of batteries and ultracapacitors has become an effective solution to satisfy the requirements of high power density and high energy density for the energy-storage system of electric vehicles.Three aspects of such combination efforts were considered for evaluating the four types of hybrid energy-storage system(HESS)topologies.First,a novel optimization framework was proposed and implemented to optimize the voltage level of a battery pack and an ultracapacitor pack for the four types of HESS topologies.During the optimization process,the dynamic programming(DP)algorithm was iteratively applied to determine the optimal control actions.The simulation results with DP were used to evaluate the energy efficiency of different HESS topologies at different voltage levels.Second,the optimized voltage level of the battery and ultracapacitor in each topology indicates that a higher voltage level usually results in a better system performance.The simulation results also illustrate that the optimized rated voltage level of the battery pack is approximately 499.5 V,while for the ultracapacitor pack,the optimized voltage level is at its maximum allowed value.Note that the constraint of the battery voltage is initialized at200–600 V.Third,the control rules for different HESS topologies were obtained through the systematic analysis of the simulation results.In addition,advantages and disadvantages of the four topologies were summarized through evaluation of the efficiency and operating currents of the batteries and the ultracapacitor.