[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Pr...[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Province where rice blast occurs frequently,60 isolates which were pathotyped against two sets of host differentials:Chinese host differentials and CO39 NILs,were obtained.Then,20 pathotypes with the six indica host differentials(CO39 NILs) were observed,while 13 pathotypes in four race groups were observed out of the same single spore isolates with Chinese host differentials which consists of three indica cultivars and four japonica cultivars.The diversity of the pathotypes of M.grisea populations tested by CO39 NILs was 2.54 and the pathotype 137.1 occurred at predominantly high frequency(21.67%).The diversity of physiological races of M.grisea populations tested by Chinese host differentials was 1.22 and the race group ZA occurred at predominantly high frequency(73.33%).The diversity of physiological races of M.grisea in Chongyang and Yuan'an were also calculated.Overall,the diversity of pathotypes of M.grisea in Yuan'an was higher than that in Chongyang with the two sets of the host differentials.[Conclusion] This study provided current information on the pathotype spectrum of M.grisea populations in the rice fields of Hubei Province to allow the formulation of viable strategies for blast resistance breeding programs in Hubei Province.展开更多
The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candi...The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candidates as novel TB drug target is the PhoR sensor domain, an extracellular domain of PhoR histidine kinase. PhoR sensor domain is part of the two-component system PhoR-PhoP that senses environmental stimuli and relays the signal to control the expression of 78 virulent associated genes in Mycobacterium tuberculosis. 3D structure of the PhoR sensor domain will facilitate the structure based drug discovery of novel anti- tubercular. In this study, we successfully predicted and isolated the gene encoding PhoR sensor domain from Mycobacterium tuberculosis H37Rv, cloned it in pGEM-T vector and subcloned it in pRSET emGFP expression vector. PhoR sensor domain was successfully cloned and would be used for further expression, purification and crystallization studies.展开更多
基金Supported by the Key Project of the National 11th Five-Year Plan of China (2006BADO8A04-06)
文摘[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Province where rice blast occurs frequently,60 isolates which were pathotyped against two sets of host differentials:Chinese host differentials and CO39 NILs,were obtained.Then,20 pathotypes with the six indica host differentials(CO39 NILs) were observed,while 13 pathotypes in four race groups were observed out of the same single spore isolates with Chinese host differentials which consists of three indica cultivars and four japonica cultivars.The diversity of the pathotypes of M.grisea populations tested by CO39 NILs was 2.54 and the pathotype 137.1 occurred at predominantly high frequency(21.67%).The diversity of physiological races of M.grisea populations tested by Chinese host differentials was 1.22 and the race group ZA occurred at predominantly high frequency(73.33%).The diversity of physiological races of M.grisea in Chongyang and Yuan'an were also calculated.Overall,the diversity of pathotypes of M.grisea in Yuan'an was higher than that in Chongyang with the two sets of the host differentials.[Conclusion] This study provided current information on the pathotype spectrum of M.grisea populations in the rice fields of Hubei Province to allow the formulation of viable strategies for blast resistance breeding programs in Hubei Province.
文摘The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candidates as novel TB drug target is the PhoR sensor domain, an extracellular domain of PhoR histidine kinase. PhoR sensor domain is part of the two-component system PhoR-PhoP that senses environmental stimuli and relays the signal to control the expression of 78 virulent associated genes in Mycobacterium tuberculosis. 3D structure of the PhoR sensor domain will facilitate the structure based drug discovery of novel anti- tubercular. In this study, we successfully predicted and isolated the gene encoding PhoR sensor domain from Mycobacterium tuberculosis H37Rv, cloned it in pGEM-T vector and subcloned it in pRSET emGFP expression vector. PhoR sensor domain was successfully cloned and would be used for further expression, purification and crystallization studies.