The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was propo...The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.展开更多
基金Project(70004782) supported by the Regional Strategic Technology Development Program of the Ministry of Knowledge Economy(MKE) of KoreaProject(2011-0017407) supported by the National Research Foundation of Korea (NRF) Funded by the Korea Government (MEST)
文摘The stability and reliability of a tilting index table should be considered at the design stage. A design method for the lightweight and improvement of the stability of the structure in a tilting index table was proposed using a commercial analysis program, ANSYS Workbench 12, by analyzing the static-thermal characteristics of the developed high-accuracy tilting index table at its design stage. The results of the performed structural analysis show that the maximum stress is generated at the stock tail part. An optimum design for the stock tail part was carried out to reduce the maximum stress and deformation. Also, the design variables were determined by considering the support of the stock tail part for the C-axis body. In the comparison of the results before and after the optimization, the maximum deformation and stress are improved by 2.8% and 8%, respectively.