A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Differe...In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.展开更多
The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are...The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are established. The equation is solved by Wilson-θ algorithm. On the basis of the above principles,a structure kinetics analysis program is compiled. The dynamic response of supposed warship under air explosion is calculated conveniently and quickly. Under the explosion condition designed in the paper,the positive pressure period of non-contact explosion wave is much less than the natural periods of the first four modes of hull girder and the resonance of ship girder overall vibration can be avoided. The ratio of midship maximum moment to ultimate bearing strength under non-contact explosion accelerates with the increment of impact factor.展开更多
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
文摘In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.
文摘The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are established. The equation is solved by Wilson-θ algorithm. On the basis of the above principles,a structure kinetics analysis program is compiled. The dynamic response of supposed warship under air explosion is calculated conveniently and quickly. Under the explosion condition designed in the paper,the positive pressure period of non-contact explosion wave is much less than the natural periods of the first four modes of hull girder and the resonance of ship girder overall vibration can be avoided. The ratio of midship maximum moment to ultimate bearing strength under non-contact explosion accelerates with the increment of impact factor.