Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis ...Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis of wind-induced response of conical membrane structures has been performed with nonlinear random simulation method in a time domain, by considering some parameters, such as span, rise-span ratio, prestress of membrane, and characteristic of the approaching wind flow. Moreover, formulas of the dynamic coefficient and nonlinear adjustment factor are advised, which can be conveniently used in wind-resistant design of conical membrane structures.展开更多
The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 al...The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.展开更多
This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k...This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.展开更多
In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex ...In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice,thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method.The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint.To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis of wind-induced response of conical membrane structures has been performed with nonlinear random simulation method in a time domain, by considering some parameters, such as span, rise-span ratio, prestress of membrane, and characteristic of the approaching wind flow. Moreover, formulas of the dynamic coefficient and nonlinear adjustment factor are advised, which can be conveniently used in wind-resistant design of conical membrane structures.
基金the financial supports from the National Natural Science Foundation of China (No. U1864209)Jincheng Science and Technology Plan Project of Shanxi Province, China (No. 201702014)。
文摘The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.
文摘This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.
基金supported by the Defense Industrial Technology Development Program(Grant Nos.2016YFB0200700,JCKY2016601B001,and JCKY2016204B101)the Program of Introducing Talents of Discipline to Universities of China(111 Project)(Grant No.B07009)National Nature Science Foundation of China(Grant Nos.11372025,11432002,and11572024)
文摘In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice,thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method.The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint.To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.