Second-order Maller-Plesset (MP2) and density functional theory (DFT) calculations have been carried out in order to inves- tigate the structures and properties of dihydrogen-bonded CaH2...HY (Y = CH3, C2H3, C2H,...Second-order Maller-Plesset (MP2) and density functional theory (DFT) calculations have been carried out in order to inves- tigate the structures and properties of dihydrogen-bonded CaH2...HY (Y = CH3, C2H3, C2H, CN, and NC) complexes. Our cal- culations revealed two possible structures for Call2 in CaH2..,HY complexes: linear (I) and bent (II). The bond lengths, interac- tion energies, and strengths for H...H interactions obtained by both MP2 and B3LYP methods are quite close to each other. It was found that the interaction energy decreases with increasing electron density at the Ca-H bond critical point. At- om-in-molecule (AIM) results show that for all of Ca-H...H-Y interactions considered here, the Laplacian of the electron densi- ty at the H--.H bond critical point is positive, indicating the electrostatic nature of these Ca-H...H-Y dihydrogen bonded systems.展开更多
This paper is proposed to understand the interaction of porphyrin layers with diatomic molecules interacting at their interior regions by applying ab initio and density functional theory (DFT) methods. We have used ...This paper is proposed to understand the interaction of porphyrin layers with diatomic molecules interacting at their interior regions by applying ab initio and density functional theory (DFT) methods. We have used NO, GO, and O2 diatomic molecules to interact with the porphyrin layers. The most common Fe-centered metalloporphyrin structure with tetra-pyrrlic rings having N4 core is chosen for the study. The optimization of Porphyrin-Porphyrin (PI-PII) and Porphyrin-Diatomic molecule-Porphyrin (P1-AB-P11) (AB = NO, CO, and 02) complexes are performed using HF method. In order to understand the planarity and appropriate stacking size of porphyrins and also to infer the separation of diatomic molecules between porphyrin layers the behavior of PI-AB-PH complexes (where AB = NO, CO, and 02) are analyzed using structural properties and molecular electrostatic potentials (MEP). The MEPs are caiculated using hybrid exchange correlation functional B3PW91 of DFT Mong with 6-31+G basis set for the PI-PH and PI-AB-Pzz complexes obtained from HF method.展开更多
Anodic aluminum oxide (AAO) with highly ordered nanoscale pores which are monodisperse and mutually parallel can be produced through a self-organized electrochemical process. Subsequent deposition of materials into ...Anodic aluminum oxide (AAO) with highly ordered nanoscale pores which are monodisperse and mutually parallel can be produced through a self-organized electrochemical process. Subsequent deposition of materials into the nanopores produces AA0 embedded nanowire arrays. Whilst the templates can be further removed to obtain free individual nanowires, the em- bedded nanowires form an interesting nanocomposite structure. Recent research activities on the fabrication and characteriza- tion of AAO template based magnetic nanowires are reviewed in this article. Studies of specific systems are given as an exam- ple of the research in the area.展开更多
基金supported by the National Natural Science Foundation of China (20973076,20703021)the Basic Science Research Funding of Jilin University
文摘Second-order Maller-Plesset (MP2) and density functional theory (DFT) calculations have been carried out in order to inves- tigate the structures and properties of dihydrogen-bonded CaH2...HY (Y = CH3, C2H3, C2H, CN, and NC) complexes. Our cal- culations revealed two possible structures for Call2 in CaH2..,HY complexes: linear (I) and bent (II). The bond lengths, interac- tion energies, and strengths for H...H interactions obtained by both MP2 and B3LYP methods are quite close to each other. It was found that the interaction energy decreases with increasing electron density at the Ca-H bond critical point. At- om-in-molecule (AIM) results show that for all of Ca-H...H-Y interactions considered here, the Laplacian of the electron densi- ty at the H--.H bond critical point is positive, indicating the electrostatic nature of these Ca-H...H-Y dihydrogen bonded systems.
基金the Science and Engineering Research Board (SERB), India for awarding the fast track project (Project No: SB/FTP/PS-096/2013)
文摘This paper is proposed to understand the interaction of porphyrin layers with diatomic molecules interacting at their interior regions by applying ab initio and density functional theory (DFT) methods. We have used NO, GO, and O2 diatomic molecules to interact with the porphyrin layers. The most common Fe-centered metalloporphyrin structure with tetra-pyrrlic rings having N4 core is chosen for the study. The optimization of Porphyrin-Porphyrin (PI-PII) and Porphyrin-Diatomic molecule-Porphyrin (P1-AB-P11) (AB = NO, CO, and 02) complexes are performed using HF method. In order to understand the planarity and appropriate stacking size of porphyrins and also to infer the separation of diatomic molecules between porphyrin layers the behavior of PI-AB-PH complexes (where AB = NO, CO, and 02) are analyzed using structural properties and molecular electrostatic potentials (MEP). The MEPs are caiculated using hybrid exchange correlation functional B3PW91 of DFT Mong with 6-31+G basis set for the PI-PH and PI-AB-Pzz complexes obtained from HF method.
文摘Anodic aluminum oxide (AAO) with highly ordered nanoscale pores which are monodisperse and mutually parallel can be produced through a self-organized electrochemical process. Subsequent deposition of materials into the nanopores produces AA0 embedded nanowire arrays. Whilst the templates can be further removed to obtain free individual nanowires, the em- bedded nanowires form an interesting nanocomposite structure. Recent research activities on the fabrication and characteriza- tion of AAO template based magnetic nanowires are reviewed in this article. Studies of specific systems are given as an exam- ple of the research in the area.