The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the...The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the laminate composite membrane alternate greatly in the orbital period, which is about±80℃. This range exceeds the material ' s operating temperature level. So it is necessary to put effective thermal control into effect to the laminate composite membrane. There is temperature gradient in the thickness direction of the laminate composite membrane; there is a light change in Kevlar/Epoxy layer. The temperature of the laminate composite membrane is obviously lower than the seam' s temperature. Results provide reference to the thermal control of the inflatable reflector with high precision requirement.展开更多
Anisotropic polyaniline (PAni) plates decorated with self-aligned nanofiber arrays were synthesized under the hydrothermaI conditions. The formation mechanism of the self-assembled structures was investigated by stu...Anisotropic polyaniline (PAni) plates decorated with self-aligned nanofiber arrays were synthesized under the hydrothermaI conditions. The formation mechanism of the self-assembled structures was investigated by studying the effect on PAni micro-structure with additive electrolyte in reaction system, and numerical simulation for dependence of systematic electrostatic energy on cross angles of self-assembled nanofiber arrays in grid textured PAni plates. It is proposed that the electrostatic interaction based on ionic doping charges plays an important role in the formation of the self-assembled PAni structures.展开更多
The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate...The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data展开更多
In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanost...In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.展开更多
Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have b...Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have been reported in the literatures.In the present review,we summarized all the available information regarding the biosynthesis,distributions,separation methods,chemical structures,spectral characteristics,and biological activities of natural secolignans,and provided some valuable new insights for the further study.展开更多
文摘The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the laminate composite membrane alternate greatly in the orbital period, which is about±80℃. This range exceeds the material ' s operating temperature level. So it is necessary to put effective thermal control into effect to the laminate composite membrane. There is temperature gradient in the thickness direction of the laminate composite membrane; there is a light change in Kevlar/Epoxy layer. The temperature of the laminate composite membrane is obviously lower than the seam' s temperature. Results provide reference to the thermal control of the inflatable reflector with high precision requirement.
基金This work was supported by the National Natural Science Foundation of China (No.90606021, No.60676006, and No.60706019) and the State Key Program for Basic Research of China (No.2006CBOL1000).
文摘Anisotropic polyaniline (PAni) plates decorated with self-aligned nanofiber arrays were synthesized under the hydrothermaI conditions. The formation mechanism of the self-assembled structures was investigated by studying the effect on PAni micro-structure with additive electrolyte in reaction system, and numerical simulation for dependence of systematic electrostatic energy on cross angles of self-assembled nanofiber arrays in grid textured PAni plates. It is proposed that the electrostatic interaction based on ionic doping charges plays an important role in the formation of the self-assembled PAni structures.
文摘The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data
基金supported by the Ministry of Education under AcRF Tier 2 (ARC 19/15, No. MOE2014-T2-2-093 MOE2015-T2-2-057+6 种基金 MOE2016-T2-2-103 MOE2017-T2-1-162)AcRF Tier 1 (2016-T1-001-147 2016-T1-002-051 2017-T1-001-150 2017-T1-002-119)Nanyang Technological University under StartUp Grant (M4081296.070.500000) in Singapore
文摘In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ligands are used to tune/stabilize the morphology of nanostructures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl(3 mol L-1 KCl) are used as the counter, working and reference electrodes, respectively.Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals,such as Au and Pd, from their bulk materials, which could exhibit various promising applications.
基金National Natural Science Foundation of China(Grant No.81374067)Shanghai Municipal Health Commission(Grant No.2018ZY002)
文摘Naturally occurring secolignans have drawn the considerable attention because of their novel structures and diverse biological activities.In recent years,various natural secolignans with extensive bioactivities have been reported in the literatures.In the present review,we summarized all the available information regarding the biosynthesis,distributions,separation methods,chemical structures,spectral characteristics,and biological activities of natural secolignans,and provided some valuable new insights for the further study.