期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于WordNet的无导词义消歧方法 被引量:6
1
作者 王瑞琴 孔繁胜 潘俊 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期732-737,共6页
有导词义消歧机器学习方法由于需要大量人力进行词义标注,难以适用于大规模词义消歧任务.提出一种避免人工词义标注的无导消歧方法.该方法综合利用WordNet知识库中的多种知识源(包括:词义定义描述、使用实例、结构化语义关系、领域属性... 有导词义消歧机器学习方法由于需要大量人力进行词义标注,难以适用于大规模词义消歧任务.提出一种避免人工词义标注的无导消歧方法.该方法综合利用WordNet知识库中的多种知识源(包括:词义定义描述、使用实例、结构化语义关系、领域属性等)描述歧义词的词义信息,生成词义的"代表词汇集"和"领域代表词汇集",结合词汇的词频分布信息和所处的上下文环境进行词义判定.利用通用测试集Senseval-3对6个典型的无导词义消歧方法进行开放实验,该方法取得平均正确率为49.93%的消歧结果. 展开更多
关键词 词义消歧 WordNet知识库 结构化语义关系
下载PDF
Choosing meaningful structure data for improving web search
2
作者 郭茜 杨晓春 +1 位作者 于戈 李广翱 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期343-346,共4页
In order to improve the quality of web search,a new query expansion method by choosing meaningful structure data from a domain database is proposed.It categories attributes into three different classes,named as concep... In order to improve the quality of web search,a new query expansion method by choosing meaningful structure data from a domain database is proposed.It categories attributes into three different classes,named as concept attribute,context attribute and meaningless attribute,according to their semantic features which are document frequency features and distinguishing capability features.It also defines the semantic relevance between two attributes when they have correlations in the database.Then it proposes trie-bitmap structure and pair pointer tables to implement efficient algorithms for discovering attribute semantic feature and detecting their semantic relevances.By using semantic attributes and their semantic relevances,expansion words can be generated and embedded into a vector space model with interpolation parameters.The experiments use an IMDB movie database and real texts collections to evaluate the proposed method by comparing its performance with a classical vector space model.The results show that the proposed method can improve text search efficiently and also improve both semantic features and semantic relevances with good separation capabilities. 展开更多
关键词 WEB SEMANTIC attributes relationship structure data query expansion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部