The immersion corrosion of archaeological iron in solution(0.06mol·L- 1NaCl+0.03mol·L -1 Na2SO4+ 0.01mol·L- 1 NaHCO3)simulating soil water composition was presented.The evolution of archaeological iron ...The immersion corrosion of archaeological iron in solution(0.06mol·L- 1NaCl+0.03mol·L -1 Na2SO4+ 0.01mol·L- 1 NaHCO3)simulating soil water composition was presented.The evolution of archaeological iron from iron to iron oxide and to iron oxy-hydroxides compounds was investigated by scanning electron microscope(SEM) and X-ray diffraction(XRD)analysis.According to the morphology,phase composition,and transformation proc- ess,the contributions of each corrosion product to archaeological iron were discussed.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. ...In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.展开更多
Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first...Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first four displacement modes of intact and different damaged arch are simulated and the displacement mode changes are obtained. Next, the wavelet transformation is applied to the displacement mode changes in arch and wavelet coefficients at damage loci are picked. Finally, the damage index including damage location and damage intensity in arch is provided and plotted. The results show that wavelet coefficient module maximum of mode changes can be the damage indicator and is influenced by damage location and damage intensity. The damage indicator is proportional to the damage intensity and present monotonic trend according to damage location which depend on the mode order. At the same time, the large modulus maximum corresponds to small damage combination of location and intensity in the first four modes.展开更多
基金Supported by the National Key Technologies R&D Program of the 10th Five-Year Plan Period(No.2001BA805B01).
文摘The immersion corrosion of archaeological iron in solution(0.06mol·L- 1NaCl+0.03mol·L -1 Na2SO4+ 0.01mol·L- 1 NaHCO3)simulating soil water composition was presented.The evolution of archaeological iron from iron to iron oxide and to iron oxy-hydroxides compounds was investigated by scanning electron microscope(SEM) and X-ray diffraction(XRD)analysis.According to the morphology,phase composition,and transformation proc- ess,the contributions of each corrosion product to archaeological iron were discussed.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
基金Project(51074178)supported by the National Natural Science Foundation of ChinaProject(2011ssxt274)supported by the Graduated Students’ Research and Innovation Foundation of Central South University of China+1 种基金Project(2011QNZT087)supported by the Graduated Students’ Free Exploration Foundation of Central South University of ChinaProject(1343-76140000011)supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,China
文摘In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.
文摘Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first four displacement modes of intact and different damaged arch are simulated and the displacement mode changes are obtained. Next, the wavelet transformation is applied to the displacement mode changes in arch and wavelet coefficients at damage loci are picked. Finally, the damage index including damage location and damage intensity in arch is provided and plotted. The results show that wavelet coefficient module maximum of mode changes can be the damage indicator and is influenced by damage location and damage intensity. The damage indicator is proportional to the damage intensity and present monotonic trend according to damage location which depend on the mode order. At the same time, the large modulus maximum corresponds to small damage combination of location and intensity in the first four modes.