The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth&...The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.展开更多
The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physi...The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physical parameters and the effects of temperature on the microbattery were studied through MCNP.For the proposed optimization design,P-type silicon was used as the substrate for the betavoltaic microbattery.Based on the proposed theory,a sandwich microbattery with a shallow junction was fabricated.The temperature dependence of the device was also measured.The open-circuit voltaic(Voc)temperature dependence of the optimized sandwich betavoltaic microbattery was linear.However,the Voc of the betavoltaic microbattery with a high-resistance substrate exponentially decreased over the range of room temperature in the experiment and simulation.In addition,the sandwich betavoltaic microbattery offered higher power than the monolayer betavoltaic one.The results of this paper provide a significant technical reference for optimizing the design and studying temperature effects on betavoltaics of the same type.展开更多
The Box-Cox transformation model has been widely used in applied econometrics, positive accounting, positive finance and statistics. There is a large literature on Box-Cox transformation model with linear structure. H...The Box-Cox transformation model has been widely used in applied econometrics, positive accounting, positive finance and statistics. There is a large literature on Box-Cox transformation model with linear structure. However, there is seldom seen on the discussion for such a model with partially linear structure. Considering the importance of the partially linear model, in this paper, a relatively simple semi-parametric estimation procedure is proposed for the Box-Cox transformation model without presuming the linear functional form and without specifying any parametric form of the disturbance, which largely reduces the risk of model misspecification. We show that the proposed estimator is consistent and asymptotically normally distributed. Its covariance matrix is also in a closed form, which can be easily estimated. Finally, a simulation study is conducted to see the finite sample performance of our estimator.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10603011)the National High Technology Research and Development Program (Grant No.2009AA12Z307)+1 种基金the Science and Technology Commission of Shanghai Municipality (Grant Nos.05QMX1462 and 08ZR1422400)the Youth Foundation of Knowledge Innovation Project of the Chinese Academy of Sciences,Shanghai Astronomical Observatory (Grant No.5120090304)
文摘The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.
基金supported by the National Natural Science Foundation of China(Grant No.11205088)the Aeronautical Science Foundation of China(Grant No.2012ZB52021)+1 种基金the Funding of Jiangsu Innovation Program for Graduate Education(Grant No.CXZZ12_0146)Fundamental Research Funds for the Central Universities
文摘The design scheme of a sandwich-structure betavoltaic microbattery based on silicon using63Ni is presented in this paper.This structure differs from a monolayer energy conversion unit.The optimization of various physical parameters and the effects of temperature on the microbattery were studied through MCNP.For the proposed optimization design,P-type silicon was used as the substrate for the betavoltaic microbattery.Based on the proposed theory,a sandwich microbattery with a shallow junction was fabricated.The temperature dependence of the device was also measured.The open-circuit voltaic(Voc)temperature dependence of the optimized sandwich betavoltaic microbattery was linear.However,the Voc of the betavoltaic microbattery with a high-resistance substrate exponentially decreased over the range of room temperature in the experiment and simulation.In addition,the sandwich betavoltaic microbattery offered higher power than the monolayer betavoltaic one.The results of this paper provide a significant technical reference for optimizing the design and studying temperature effects on betavoltaics of the same type.
基金funded in part by National Natural Science Foundation of China (Grant No. 71032005)the MOE Project of Key Research Institute of Humanities and Social Science in University (Grant No. 10JJD630005)+3 种基金supported in part by New Century Excellent Talent Supporting program (Grant No. NCET-09-0538)National Natural Science Foundation of China(Grant Nos. 70871073 and 71171127)Shanghai Leading Academic Discipline Project (Grant No. B801)the Key Laboratory of Mathematical Economics (SUFE), Ministry of Education of China
文摘The Box-Cox transformation model has been widely used in applied econometrics, positive accounting, positive finance and statistics. There is a large literature on Box-Cox transformation model with linear structure. However, there is seldom seen on the discussion for such a model with partially linear structure. Considering the importance of the partially linear model, in this paper, a relatively simple semi-parametric estimation procedure is proposed for the Box-Cox transformation model without presuming the linear functional form and without specifying any parametric form of the disturbance, which largely reduces the risk of model misspecification. We show that the proposed estimator is consistent and asymptotically normally distributed. Its covariance matrix is also in a closed form, which can be easily estimated. Finally, a simulation study is conducted to see the finite sample performance of our estimator.