伴随着社会经济的快速发展,地铁、隧道、桥梁等建筑在人们的生活中占据的地位越来越高,预测分析建筑的结构变形数据,及时发现存在的安全隐患,至关重要.结合长短时记忆网络(Long Short Time Memory, LSTM)的优点,本文提出了一种基于双向...伴随着社会经济的快速发展,地铁、隧道、桥梁等建筑在人们的生活中占据的地位越来越高,预测分析建筑的结构变形数据,及时发现存在的安全隐患,至关重要.结合长短时记忆网络(Long Short Time Memory, LSTM)的优点,本文提出了一种基于双向长短时记忆网络(Bidirectional Long Short Time Memory, Bi-LSTM)的结构变形预测模型.该模型通过记忆时间节点前后的规律,预测当前节点变形数据,充分挖掘变形数据内部的关联信息.与WNN、LSTM、GRU模型进行对比,结果表明,该模型RMSE、MAPE、MAE分别下降了66.0%、61.2%、66.2%,是一种有效预测结构形变的方法.展开更多
文摘伴随着社会经济的快速发展,地铁、隧道、桥梁等建筑在人们的生活中占据的地位越来越高,预测分析建筑的结构变形数据,及时发现存在的安全隐患,至关重要.结合长短时记忆网络(Long Short Time Memory, LSTM)的优点,本文提出了一种基于双向长短时记忆网络(Bidirectional Long Short Time Memory, Bi-LSTM)的结构变形预测模型.该模型通过记忆时间节点前后的规律,预测当前节点变形数据,充分挖掘变形数据内部的关联信息.与WNN、LSTM、GRU模型进行对比,结果表明,该模型RMSE、MAPE、MAE分别下降了66.0%、61.2%、66.2%,是一种有效预测结构形变的方法.