利用全局支撑径向基函数插值初始水平集函数,以水平集函数为设计变量,以结构柔度和散热弱度的加权函数为目标函数,基于参数化水平集法(Parameterized level set method,PLSM)建立了正交各向异性结构的热力耦合多目标拓扑优化模型。结合...利用全局支撑径向基函数插值初始水平集函数,以水平集函数为设计变量,以结构柔度和散热弱度的加权函数为目标函数,基于参数化水平集法(Parameterized level set method,PLSM)建立了正交各向异性结构的热力耦合多目标拓扑优化模型。结合数值算例研究了权系数、材料方向角、泊松比因子和热导率因子对PLSM多目标最优拓扑结构和目标函数的影响,并给出了相关参数的合理取值范围;在3D打印实物的基础上完成了最优各向异性拓扑结构的性能分析,并与各向同性结构进行了对比讨论。结果表明,PLSM最优拓扑结构比变密度法的拓扑结构边界更光滑、清晰,不会出现中间密度和锯齿等现象;同时正交各向异性结构的温度场、位移场和应力场比各向同性结构均有较好地改善,加权目标函数、结构柔度和散热弱度分别降低了55%、3.18%和81.1%。展开更多
文摘利用全局支撑径向基函数插值初始水平集函数,以水平集函数为设计变量,以结构柔度和散热弱度的加权函数为目标函数,基于参数化水平集法(Parameterized level set method,PLSM)建立了正交各向异性结构的热力耦合多目标拓扑优化模型。结合数值算例研究了权系数、材料方向角、泊松比因子和热导率因子对PLSM多目标最优拓扑结构和目标函数的影响,并给出了相关参数的合理取值范围;在3D打印实物的基础上完成了最优各向异性拓扑结构的性能分析,并与各向同性结构进行了对比讨论。结果表明,PLSM最优拓扑结构比变密度法的拓扑结构边界更光滑、清晰,不会出现中间密度和锯齿等现象;同时正交各向异性结构的温度场、位移场和应力场比各向同性结构均有较好地改善,加权目标函数、结构柔度和散热弱度分别降低了55%、3.18%和81.1%。