期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
杜伊威尔的国家观
1
作者 郝涛 《中共福建省委党校学报》 北大核心 2018年第2期107-115,共9页
赫门·杜伊威尔(Herman Dooyeweerd,1894-1977),20世纪荷兰最具盛名的哲学家,他的代表作主要有《理论思想新批判》(三卷本,1935年)、《暮色中的西方思想》(1960年)和《西方文化之源》(1979年)等,这些著作涉及本体论、社会哲学、政... 赫门·杜伊威尔(Herman Dooyeweerd,1894-1977),20世纪荷兰最具盛名的哲学家,他的代表作主要有《理论思想新批判》(三卷本,1935年)、《暮色中的西方思想》(1960年)和《西方文化之源》(1979年)等,这些著作涉及本体论、社会哲学、政治哲学等诸多哲学领域,构成一个庞大的理论体系。在这个体系中,杜伊威尔最具原创性的思想之一就是他对国家哲学的重新建构。他的核心观点是:对国家的研究不能仅仅停留在实证层面,还必须探究隐藏在国家可变形式背后的稳定持久的结构性准则。 展开更多
关键词 结构性准则 领域主权 力量与正义 国家功能
下载PDF
LEARNING CAUSAL GRAPHS OF NONLINEAR STRUCTURAL VECTOR AUTOREGRESSIVE MODEL USING INFORMATION THEORY CRITERIA 被引量:1
2
作者 WEI Yuesong TIAN Zheng XIAO Yanting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1213-1226,共14页
Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linea... Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linear and with Gaussian noise. Although additive model regression can effectively infer the nonlinear causal relationships of additive nonlinear time series, it suffers from the limitation that contemporaneous causal relationships of variables must be linear and not always valid to test conditional independence relations. This paper provides a nonparametric method that employs both mutual information and conditional mutual information to identify causal structure of a class of nonlinear time series models, which extends the additive nonlinear times series to nonlinear structural vector autoregressive models. An algorithm is developed to learn the contemporaneous and the lagged causal relationships of variables. Simulations demonstrate the effectiveness of the nroosed method. 展开更多
关键词 Causal graphs conditional independence conditional mutual information nonlinear struc-tural vector autoregressive model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部