A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. Th...A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.展开更多
Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this p...Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.展开更多
Thermodynamic hypothesis and kinetic stabil- ity are currently used to understand protein folding. The former assumes that free energy minimum is the exclusive dominant mechanism in most cases, while the latter shows ...Thermodynamic hypothesis and kinetic stabil- ity are currently used to understand protein folding. The former assumes that free energy minimum is the exclusive dominant mechanism in most cases, while the latter shows that some proteins have even lower free energy in inter- mediate states and their native states are kinetically trapped in the higher free energy region. This article explores the stability condition of protein structures on the basis of our study of complex chemical systems. We believe that sep- arating one from another is not reasonable since they should be coupled, and protein structures should be dom- inated by at least two mechanisms resulting in different characteristic states. It is concluded that: (1) Structures of proteins are dynamic, showing multiple characteristic states emerging alternately and each dominated by a respective mechanism. (2) Compromise in competition of multiple dominant mechanisms might be the key to understanding the stability of protein structures. (3) The dynamic process of protein folding should be depicted through the time series of both its energetic and structural changes, which is much meaningful and applicable than the free energy landscape.展开更多
Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (...Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.展开更多
The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and ...The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions(FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.展开更多
A linear modelling of aeroacoustic waves propagation is discussed. The first point is an existence and uniqueness, theorem. But restrictive assumptions are required on the velocity of the flow. Then a counter example ...A linear modelling of aeroacoustic waves propagation is discussed. The first point is an existence and uniqueness, theorem. But restrictive assumptions are required on the velocity of the flow. Then a counter example proves that they are necessary.展开更多
Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effect...Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.展开更多
基金Projects(20775010,21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High Technology Research and Development Program of China+2 种基金Project(09JJ3016) supported by Hunan Provincial Natural Science Foundation,ChinaProject(09C066) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China
文摘A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.
文摘Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.
基金supported by the National Natural Science Foundation of China(21103195)the Knowledge Innovation Program of Chinese Academy of Sciences(KGCX2-YW-124)
文摘Thermodynamic hypothesis and kinetic stabil- ity are currently used to understand protein folding. The former assumes that free energy minimum is the exclusive dominant mechanism in most cases, while the latter shows that some proteins have even lower free energy in inter- mediate states and their native states are kinetically trapped in the higher free energy region. This article explores the stability condition of protein structures on the basis of our study of complex chemical systems. We believe that sep- arating one from another is not reasonable since they should be coupled, and protein structures should be dom- inated by at least two mechanisms resulting in different characteristic states. It is concluded that: (1) Structures of proteins are dynamic, showing multiple characteristic states emerging alternately and each dominated by a respective mechanism. (2) Compromise in competition of multiple dominant mechanisms might be the key to understanding the stability of protein structures. (3) The dynamic process of protein folding should be depicted through the time series of both its energetic and structural changes, which is much meaningful and applicable than the free energy landscape.
基金the University of Damascus, Syria, for financial support of the Ph.D.(No.1473)
文摘Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.
文摘The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions(FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.
文摘A linear modelling of aeroacoustic waves propagation is discussed. The first point is an existence and uniqueness, theorem. But restrictive assumptions are required on the velocity of the flow. Then a counter example proves that they are necessary.
文摘Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.