For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
By analyzing hundreds of capillary pressure curves, the controlling factors of shape and type of capillary pressure curves are found and a novel method is presented to construct capillary pressure curves by using rese...By analyzing hundreds of capillary pressure curves, the controlling factors of shape and type of capillary pressure curves are found and a novel method is presented to construct capillary pressure curves by using reservoir permeability and a synthesized index. The accuracy of this new method is verified by mercury-injection experiments. Considering the limited quantity of capillary pressure data, a new method is developed to extract the Swanson parameter from the NMR T2 distribution and estimate reservoir permeability. Integrating with NMR total porosity, reservoir capillary pressure curves can be constructed to evaluate reservoir pore structure in the intervals with NMR log data. An in-situ example of evaluating reservoir pore structure using the capillary pressure curves by this new method is presented. The result shows that it accurately detects the change in reservoir pore structure as a function of depth.展开更多
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
文摘By analyzing hundreds of capillary pressure curves, the controlling factors of shape and type of capillary pressure curves are found and a novel method is presented to construct capillary pressure curves by using reservoir permeability and a synthesized index. The accuracy of this new method is verified by mercury-injection experiments. Considering the limited quantity of capillary pressure data, a new method is developed to extract the Swanson parameter from the NMR T2 distribution and estimate reservoir permeability. Integrating with NMR total porosity, reservoir capillary pressure curves can be constructed to evaluate reservoir pore structure in the intervals with NMR log data. An in-situ example of evaluating reservoir pore structure using the capillary pressure curves by this new method is presented. The result shows that it accurately detects the change in reservoir pore structure as a function of depth.