Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity ...Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity at different states were systematically investigated. The as-cast microstructure consists of three phases: Cu matrix, Cr and Cu5 Zr. Zr is completely dissolved into the matrix while partial Cr remains after the solid solution treatment. Aging of the cold-rolled sample makes nanocrystals of Cr and Cu5 Zr precipitate from the matrix, and the microhardness and electrical conductivity rise. A combination of high microhardness(HV 186) and high conductivity(81% IACS) can be obtained by aging the sample at 773 K for 60 min. As the aging temperature increases, the orientation degree of the Cu crystals gradually decreases to zero, but the microstrain in them cannot be eliminated completely owing to the presence of precipitates and dislocations. The Cr precipitates exhibit the N-W orientation relationship with the matrix when the coherence strengthening mechanism plays a main role.展开更多
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ...In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.展开更多
The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigat...The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigated. The heat treatment at 1050 °C is favorable to improve the interface bonding between the columnar structures due to the disappearance of the intergranular gaps. Comparing with the thin NiCoCrAl alloy sheet before heat treatment, the Ni3Al phase appears in the NiCoCrAl alloy sheet after heat treatment, which is favorable to improve the interface bonding between the columnar structures. The increase in the tensile strength and elongation is attributed to the improvement of the interface bonding between the columnar structures. The residual stress in the NiCoCrAl alloy sheet after heat treatment is reduced significantly, which also confirms that the interface bonding is improved by the heat treatment.展开更多
The effects of heat treatment and strontium (SO addition on the microstructure and mechanical properties of ADC12 alloys were investigated, and two-stage solution treatment was introduced. The results indicated that ...The effects of heat treatment and strontium (SO addition on the microstructure and mechanical properties of ADC12 alloys were investigated, and two-stage solution treatment was introduced. The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys. When 0.05 wt% Sr was added into the alloy, the eutectic Si phase was fully modified into fine fibrous structure; a-A1 and fl-A15FeSi phases were best refined; and the eutectic AlzCu phase was modified into block-like AlzCu phase that continuously distributed at the grain boundary. The ultimate tensile strength (UTS) (270.63 MPa) and elongation (3.19%) were increased by 51.2% and 73.4% respectively compared with unmodified alloys. After the two-stage solution treatment (500 ~C, 6 h+520 ~C, 4 h), for 0.05 wt% Sr modified ADC12 alloys, the Si phases transformed into fine particle structure and AlzCu phases were fully dissolved. The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3% and 6.8% respectively compared to solution treatment at 500 ~C and 520 ~C. After the aging treatment (175 ~C, 7 h), the hardness and UTS were increased by 38.73% and 13.96% respectively when compared with the unmodified alloy.展开更多
3D visualisations of the microstructure of flocculated particulates and sediments using optical confocal laser mi- croscopy and high resolution X-ray microtomography (XMT) methods are described. Data obtained from in-...3D visualisations of the microstructure of flocculated particulates and sediments using optical confocal laser mi- croscopy and high resolution X-ray microtomography (XMT) methods are described. Data obtained from in-situ measurements should enable direct computation of the properties of solids assembly (shape, size, contact area) and their permeability to fluids. A specific application relating to the formation of silica aggregates is described from which the behaviour of sediments containing these materials can be predicted on the basis of a bench-top test and the use of a Lattice Boltzman simulation. It is proposed that the method can potentially be used to predict trends such as the filtration behaviour of porous structures under different states of compression. This offers a significant benefit in assisting the formulation design of flocculated materials pertinent to a number of industrial sectors wishing to design optimal filtration or relevant operations.展开更多
To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemica...To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.展开更多
The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese scrip...The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese script shaped Mg2Si phases in the AZ61-0.7Si magnesium alloy.After being solutionized at 420℃ for 16-48 h,the morphology of the Mg2Si phases in the AZ61-0.7Si alloy changes from the Chinese script shape to the short pole and block shapes.Accordingly,the tensile and creep properties of the AZ61-0.7Si alloy are improved.After being solutionized at 420℃ for 24 h and followed by aging treatment at 200℃ for 12 h,the heat-treated alloy exhibits relatively high tensile and creep properties than those of the as-cast alloy.展开更多
To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural ...To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.展开更多
In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed ...In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.展开更多
Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by po...Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by poor long-term durability because transition metals can easily leach.In this study,we developed a nonmetallic doping approach and prepared a P-doped Pt catalyst with excellent durability for the ORR.Carbon-supported core-shell nanoparticles with a P-doped Pt core and Pt shell(denoted as PtPx@Pt/C)were synthesized via heat-treatment phosphorization of commercial Pt/C,followed by acid etching.Compositional analysis using electron energy loss spectroscopy and X-ray photoelectron spectroscopy clearly demonstrated that Pt was enriched in the near-surface region(approximately 1 nm)of the carbon-supported core-shell nanoparticles.Owning to P doping,the ORR specific activity and mass activity of the PtP_(1.4)@Pt/C catalyst were as high as 0.62 mA cm^(–2)and 0.31 mAμgPt–^(1),respectively,at 0.90 V,and they were enhanced by 2.8 and 2.1 times,respectively,in comparison with the Pt/C catalyst.More importantly,PtP_(1.4)@Pt/C exhibited superior stability with negligible mass activity loss(6%after 30000 potential cycles and 25%after 90000 potential cycles),while Pt/C lost 46%mass activity after 30000 potential cycles.The high ORR activity and durability were mainly attributed to the core-shell nanostructure,the electronic structure effect,and the resistance of Pt nanoparticles against aggregation,which originated from the enhanced ability of the PtP_(1.4)@Pt to anchor to the carbon support.This study provides a new approach for constructing nonmetal-doped Pt-based catalysts with excellent activity and durability for the ORR.展开更多
The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and ...The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and hardness test, respectively. The relationship between mechanical properties and microstructures of the alloys was discussed. With trace Er addition to A1-Zn-Mg-Cu alloy, Er and Al interact to form Al3Er phase, which is coherent with a(A1) matrix. The results show that Al-Zn-Mg-Cu alloy after retrogression and re-ageing (RRA) heat treatment exhibits higher tensile strength, ductility and conductivity.展开更多
It has been reported that natural cellulose (cellulose I) can not be oxidized by TEMPO - NaOCI - NaBr system, one of TEMPO-mediated selective oxidant systems, but regenerated cellulose (cellulose Ⅱ ) can be compl...It has been reported that natural cellulose (cellulose I) can not be oxidized by TEMPO - NaOCI - NaBr system, one of TEMPO-mediated selective oxidant systems, but regenerated cellulose (cellulose Ⅱ ) can be completely selectively oxidized. In the present work, natural cellulose pulp was treated with NaOH solution, which concentration is lower than 20 wt%. The alkaline celluloses obtained were oxidized by TEMPO - NaOCI - NaBr system and the factors which influence the selective oxidation reaction rate have been investigated. The structure of the oxidized products has been characterized by Fourier transform-infrared (FTIR), nuclear magenatic resonace (NMR) and wide angle X-ray diffraction (WAXD) methods, and their adsorption properties for Cu^2+ and Cd^2+ in aqueous solutions have been preliminarily examined. The results show that after the alkaline treatment, the primary hydroxyl at C6 position of natural cellulose can be selectively oxidized to carboxyl group in the reaction medium at pH 10.8, the oxidation rate becomes greater with the NaOH concentration and alkaline treatment time increasing. The alkaline treatment has a great effect on the crystal structure of natural cellulose, but the crystal structure of alkaline cellulose keeps almost unchanged after oxidation. The adsorption capacity is enhanced by introducing carboxyl groups into the cellulose macromolecular chains.展开更多
The impregnation of a special grade polyacrylonitrile (PAN) precursor fibres was carried out in a 8 wt. % KMnO4 aqueous solution to obtain modified PAN precursor fibres. The foctts is primarily on the effects of mod...The impregnation of a special grade polyacrylonitrile (PAN) precursor fibres was carried out in a 8 wt. % KMnO4 aqueous solution to obtain modified PAN precursor fibres. The foctts is primarily on the effects of modification on the chemical structure and the physical mechanical properties of precursor ribres, them-aft stabilised and their resulting carbon fibres, which were characterized by the con-bination use of densities, wide-angle X-my diffraction (WAXD), X-my photoelectron spectrosopy (XPS), Elemental analysis (EA), Fourier transform infrared (FT-IR) and scanning clectronmicroscope (SEM), etc. KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor fibre, tin, form partly C≡N groups to C=N ones, decrcase the crystal size, increase the orientation index, increase the crystallinity index, furthermore increase the densities of modified PAN precursors and resulting thermal stabiliscd fibres. As a result, the carbonfibres developed from modified PAN fibres show an improvement in tensile strength of 31.25% and an improvement in elongation of 77.78%, but a decrease of 16.52% in Young's modulus.展开更多
The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design...The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.展开更多
Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including...Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.展开更多
Last two decades have witnessed significant progress in thermoelectric research, to which materials processing has crucial contributions. Compared with traditional zone-melting method used for fabricating bismuth tell...Last two decades have witnessed significant progress in thermoelectric research, to which materials processing has crucial contributions. Compared with traditional zone-melting method used for fabricating bismuth telluride alloys, new powder-based processes have more freedom for manipulating nanostructnres and nanocomposites. Thermoelectric performance enhancement is realized in most thermoelectric materials by introducing fine-grained and nano-composite structures with accurately controlled compositions. This review gives a comprehensive summary on the processing aspects of thermoelectric materials with three focuses on the powder synthesis, advanced sintering process and the formation of nanostructures in bulk materials.展开更多
基金Project(51227001)supported by the National Natural Science Foundation of ChinaProject(2011CB610405)supported by the National Basic Research Program of China
文摘Cu-0.81Cr-0.12Zr-0.05La-0.05Y(mass fraction) alloy was successively subjected to hot rolling, solid solution treatment, cold rolling and aging treatments. Its microstructure, microhardness and electrical conductivity at different states were systematically investigated. The as-cast microstructure consists of three phases: Cu matrix, Cr and Cu5 Zr. Zr is completely dissolved into the matrix while partial Cr remains after the solid solution treatment. Aging of the cold-rolled sample makes nanocrystals of Cr and Cu5 Zr precipitate from the matrix, and the microhardness and electrical conductivity rise. A combination of high microhardness(HV 186) and high conductivity(81% IACS) can be obtained by aging the sample at 773 K for 60 min. As the aging temperature increases, the orientation degree of the Cu crystals gradually decreases to zero, but the microstrain in them cannot be eliminated completely owing to the presence of precipitates and dislocations. The Cr precipitates exhibit the N-W orientation relationship with the matrix when the coherence strengthening mechanism plays a main role.
基金Projects(51161015,51371094) supported by the National Natural Science Foundation of China
文摘In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
基金Projects(51002019,91016024,51102031)supported by the National Natural Science Foundation of China
文摘The NiCoCrAl alloy sheet was fabricated by electron beam physical vapor deposition technique and the effects of the heat treatment on the microstructure and tensile strength of the NiCoCrAl alloy sheet were investigated. The heat treatment at 1050 °C is favorable to improve the interface bonding between the columnar structures due to the disappearance of the intergranular gaps. Comparing with the thin NiCoCrAl alloy sheet before heat treatment, the Ni3Al phase appears in the NiCoCrAl alloy sheet after heat treatment, which is favorable to improve the interface bonding between the columnar structures. The increase in the tensile strength and elongation is attributed to the improvement of the interface bonding between the columnar structures. The residual stress in the NiCoCrAl alloy sheet after heat treatment is reduced significantly, which also confirms that the interface bonding is improved by the heat treatment.
基金Project(51364035) supported by the National Natural Science Foundation of China Project(20133601110001) supported by the Ministry of Education Tied up with the Special Research Fund for the Doctoral Program for Higher School, China+1 种基金 Project(KJLD14003) supported by the Loading Program of Science and Technology of College of Jiangxi Province, China Project(2012-CYH-DW-XCL-002) supported by the Production and Teaching and Research Cooperation Plan of Naaachaaag Non-party Experts and Doctor, China
文摘The effects of heat treatment and strontium (SO addition on the microstructure and mechanical properties of ADC12 alloys were investigated, and two-stage solution treatment was introduced. The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys. When 0.05 wt% Sr was added into the alloy, the eutectic Si phase was fully modified into fine fibrous structure; a-A1 and fl-A15FeSi phases were best refined; and the eutectic AlzCu phase was modified into block-like AlzCu phase that continuously distributed at the grain boundary. The ultimate tensile strength (UTS) (270.63 MPa) and elongation (3.19%) were increased by 51.2% and 73.4% respectively compared with unmodified alloys. After the two-stage solution treatment (500 ~C, 6 h+520 ~C, 4 h), for 0.05 wt% Sr modified ADC12 alloys, the Si phases transformed into fine particle structure and AlzCu phases were fully dissolved. The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3% and 6.8% respectively compared to solution treatment at 500 ~C and 520 ~C. After the aging treatment (175 ~C, 7 h), the hardness and UTS were increased by 38.73% and 13.96% respectively when compared with the unmodified alloy.
文摘3D visualisations of the microstructure of flocculated particulates and sediments using optical confocal laser mi- croscopy and high resolution X-ray microtomography (XMT) methods are described. Data obtained from in-situ measurements should enable direct computation of the properties of solids assembly (shape, size, contact area) and their permeability to fluids. A specific application relating to the formation of silica aggregates is described from which the behaviour of sediments containing these materials can be predicted on the basis of a bench-top test and the use of a Lattice Boltzman simulation. It is proposed that the method can potentially be used to predict trends such as the filtration behaviour of porous structures under different states of compression. This offers a significant benefit in assisting the formulation design of flocculated materials pertinent to a number of industrial sectors wishing to design optimal filtration or relevant operations.
基金Project(50808184) supported by the National Natural Science Foundation of China
文摘To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of ChinaProject(2006AA4012-9-6,2007BB4400)supported by the Chongqing Science and Technology Commission,China
文摘The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese script shaped Mg2Si phases in the AZ61-0.7Si magnesium alloy.After being solutionized at 420℃ for 16-48 h,the morphology of the Mg2Si phases in the AZ61-0.7Si alloy changes from the Chinese script shape to the short pole and block shapes.Accordingly,the tensile and creep properties of the AZ61-0.7Si alloy are improved.After being solutionized at 420℃ for 24 h and followed by aging treatment at 200℃ for 12 h,the heat-treated alloy exhibits relatively high tensile and creep properties than those of the as-cast alloy.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Rail way of Chinaproject(2005) supported by the Postdoctoral Foundation of Central South University
文摘To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.
基金This work was supported by Scientific Research Projects Coordination Unit of Karadeniz Technical University,Turkey(No.2008.112.03.1).
文摘In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.
文摘Alloying Pt with transition metals can significantly improve the catalytic properties for the oxygen reduction reaction(ORR).However,the application of Pt-transition metal alloys in fuel cells is largely limited by poor long-term durability because transition metals can easily leach.In this study,we developed a nonmetallic doping approach and prepared a P-doped Pt catalyst with excellent durability for the ORR.Carbon-supported core-shell nanoparticles with a P-doped Pt core and Pt shell(denoted as PtPx@Pt/C)were synthesized via heat-treatment phosphorization of commercial Pt/C,followed by acid etching.Compositional analysis using electron energy loss spectroscopy and X-ray photoelectron spectroscopy clearly demonstrated that Pt was enriched in the near-surface region(approximately 1 nm)of the carbon-supported core-shell nanoparticles.Owning to P doping,the ORR specific activity and mass activity of the PtP_(1.4)@Pt/C catalyst were as high as 0.62 mA cm^(–2)and 0.31 mAμgPt–^(1),respectively,at 0.90 V,and they were enhanced by 2.8 and 2.1 times,respectively,in comparison with the Pt/C catalyst.More importantly,PtP_(1.4)@Pt/C exhibited superior stability with negligible mass activity loss(6%after 30000 potential cycles and 25%after 90000 potential cycles),while Pt/C lost 46%mass activity after 30000 potential cycles.The high ORR activity and durability were mainly attributed to the core-shell nanostructure,the electronic structure effect,and the resistance of Pt nanoparticles against aggregation,which originated from the enhanced ability of the PtP_(1.4)@Pt to anchor to the carbon support.This study provides a new approach for constructing nonmetal-doped Pt-based catalysts with excellent activity and durability for the ORR.
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and hardness test, respectively. The relationship between mechanical properties and microstructures of the alloys was discussed. With trace Er addition to A1-Zn-Mg-Cu alloy, Er and Al interact to form Al3Er phase, which is coherent with a(A1) matrix. The results show that Al-Zn-Mg-Cu alloy after retrogression and re-ageing (RRA) heat treatment exhibits higher tensile strength, ductility and conductivity.
文摘It has been reported that natural cellulose (cellulose I) can not be oxidized by TEMPO - NaOCI - NaBr system, one of TEMPO-mediated selective oxidant systems, but regenerated cellulose (cellulose Ⅱ ) can be completely selectively oxidized. In the present work, natural cellulose pulp was treated with NaOH solution, which concentration is lower than 20 wt%. The alkaline celluloses obtained were oxidized by TEMPO - NaOCI - NaBr system and the factors which influence the selective oxidation reaction rate have been investigated. The structure of the oxidized products has been characterized by Fourier transform-infrared (FTIR), nuclear magenatic resonace (NMR) and wide angle X-ray diffraction (WAXD) methods, and their adsorption properties for Cu^2+ and Cd^2+ in aqueous solutions have been preliminarily examined. The results show that after the alkaline treatment, the primary hydroxyl at C6 position of natural cellulose can be selectively oxidized to carboxyl group in the reaction medium at pH 10.8, the oxidation rate becomes greater with the NaOH concentration and alkaline treatment time increasing. The alkaline treatment has a great effect on the crystal structure of natural cellulose, but the crystal structure of alkaline cellulose keeps almost unchanged after oxidation. The adsorption capacity is enhanced by introducing carboxyl groups into the cellulose macromolecular chains.
基金HAIPURT(No.2006KYCX009)National Natural Science Foundation of Henan(No.2006430019)Hanan Innvation Project(No.0523021300)
文摘The impregnation of a special grade polyacrylonitrile (PAN) precursor fibres was carried out in a 8 wt. % KMnO4 aqueous solution to obtain modified PAN precursor fibres. The foctts is primarily on the effects of modification on the chemical structure and the physical mechanical properties of precursor ribres, them-aft stabilised and their resulting carbon fibres, which were characterized by the con-bination use of densities, wide-angle X-my diffraction (WAXD), X-my photoelectron spectrosopy (XPS), Elemental analysis (EA), Fourier transform infrared (FT-IR) and scanning clectronmicroscope (SEM), etc. KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor fibre, tin, form partly C≡N groups to C=N ones, decrcase the crystal size, increase the orientation index, increase the crystallinity index, furthermore increase the densities of modified PAN precursors and resulting thermal stabiliscd fibres. As a result, the carbonfibres developed from modified PAN fibres show an improvement in tensile strength of 31.25% and an improvement in elongation of 77.78%, but a decrease of 16.52% in Young's modulus.
文摘The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.
基金The National High-Tech Research and Development Program of China(863 Program)2014AA01A705
文摘Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.
基金supported by the National Natural Science Foundation of China(Grant No.11474176)the Ministry of Science and Technology of China(Grant No.2013CB632503)
文摘Last two decades have witnessed significant progress in thermoelectric research, to which materials processing has crucial contributions. Compared with traditional zone-melting method used for fabricating bismuth telluride alloys, new powder-based processes have more freedom for manipulating nanostructnres and nanocomposites. Thermoelectric performance enhancement is realized in most thermoelectric materials by introducing fine-grained and nano-composite structures with accurately controlled compositions. This review gives a comprehensive summary on the processing aspects of thermoelectric materials with three focuses on the powder synthesis, advanced sintering process and the formation of nanostructures in bulk materials.