The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved ...The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved polyethylene catalyst.The effects of catalyst structure on kinetic behavior were examined.The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays(EDAX),and morphologies of catalyst particles and polymer products were examined by scanning electron microscope(SEM).Hydrogen response and copolymerization performance were investigated and compared with the two catalysts.The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented.The improved polyethylene catalyst showed higher activity,better hydrogen response and copolymerization performance.展开更多
Objective: This study was to investigate whether PTEN mutations play a role in the carcinogenesis of soft tissue sarcomas (STS). Methods: Polymerase chain reaction-single strand conformation polymorphism (PCR-SSC...Objective: This study was to investigate whether PTEN mutations play a role in the carcinogenesis of soft tissue sarcomas (STS). Methods: Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to amplify 4 exons of PTEN and to analyze the conformation polymorphism, then DNA sequencing methods was used to detect point mutation of PTEN gene four exons of abnormal single strand conformation in soft tissue sarcomas. Results: Two of 86 cases showed 130th condon G→A missense mutation in the exon 8 of PTEN gene, and this mutation made Arg to change to Gin in PTEN protein structure 334th condon A→T missense mutation in the exon 8 of PTEN gene, and this mutation made Asn to change to Lys in PI-EN protein structure. Conclusion: These data indicated the existence of PTEN mutation in soft tissue sarcomas, but PTEN gene mutation rate is very low. PTEN mutation may prays an less important role in the development and malignant transformation of soft tissue sarcomas.展开更多
It is known that the seismic response of a structural system is highly influenced, in addition to the earthquake input, by the dynamic characteristics of the system itself. This paper presents an approach for the iden...It is known that the seismic response of a structural system is highly influenced, in addition to the earthquake input, by the dynamic characteristics of the system itself. This paper presents an approach for the identification of the characteristics of the structural system resisting to horizontal loads which enables to satisfy given seismic performance objectives. This is achieved by considering a total conceptual separation between the structural systems resisting to vertical and horizontal loads. The proposed approach is first briefly developed in general within a Performance-Based Seismic Design (PBSD) framework and then fully applied to the case study of a five-storey steel building structure. It is composed of three basic steps: (1) identification of the fundamental characteristics which should be possessed by the horizontal resisting system to satisfy a multiplicity of performance objectives, (2) development of a peculiar horizontal resisting system composed of "crescent shaped braces" which are specifically calibrated to satisfy given performance objectives, (3) verification, by means of appropriate time-history analyses, of the seismic performances achieved. In detail, the horizontal resisting system is calibrated to satisfy a multiplicity of performance objectives through the identification of an "objectives curve", in the Force-Displacement diagram, of the mechanical characteristics of the structure. The calibration is obtained by methods/tools borrowed either from Direct Displacement-Based Design (DDBD) or Force-Based Design (FBD), depending on the specific performance objective to be imposed. The applicative example has been carried out with reference to three performance objectives and has led to the identification of a horizontal resisting system composed of special bracing elements capable of realizing a sort of properly-calibrated seismic isolation called crescent-shaped braces. The results obtained through non-linear dynamic analyses have shown that the proposed approach leads to the congruity between the imposed and the achieved seismic performances.展开更多
Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section undergrou...Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures展开更多
The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analys...The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.展开更多
This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration di...This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration differentiation formula and the trapezoidal rule, resulting in a self-starting, single step, second-order accurate algorithm. With the same computational effort as the trapezoidal rule, the proposed method remains stable in large deformation and long time range solutions even when the trapezoidal rule fails. Meanwhile, the proposed method has the following characteristics: (1) it is applicable to linear as well as general nonlinear analyses; (2) it does not involve additional variables (e.g. Lagrange multipliers) and artificial parameters; (3) it is a single-solver algorithm at the discrete time points with symmetric effective stiffness matrix and effective load vectors; and (4) it is easy to implement in an existing computational software. Some numerical results indicate that the proposed method is a powerful tool with some notable features for practical nonlinear dynamic analyses.展开更多
A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In...A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.展开更多
文摘The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved polyethylene catalyst.The effects of catalyst structure on kinetic behavior were examined.The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays(EDAX),and morphologies of catalyst particles and polymer products were examined by scanning electron microscope(SEM).Hydrogen response and copolymerization performance were investigated and compared with the two catalysts.The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented.The improved polyethylene catalyst showed higher activity,better hydrogen response and copolymerization performance.
基金Supported by a grant from the National Natural Science Foundation of China (No. 30560169)
文摘Objective: This study was to investigate whether PTEN mutations play a role in the carcinogenesis of soft tissue sarcomas (STS). Methods: Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to amplify 4 exons of PTEN and to analyze the conformation polymorphism, then DNA sequencing methods was used to detect point mutation of PTEN gene four exons of abnormal single strand conformation in soft tissue sarcomas. Results: Two of 86 cases showed 130th condon G→A missense mutation in the exon 8 of PTEN gene, and this mutation made Arg to change to Gin in PTEN protein structure 334th condon A→T missense mutation in the exon 8 of PTEN gene, and this mutation made Asn to change to Lys in PI-EN protein structure. Conclusion: These data indicated the existence of PTEN mutation in soft tissue sarcomas, but PTEN gene mutation rate is very low. PTEN mutation may prays an less important role in the development and malignant transformation of soft tissue sarcomas.
文摘It is known that the seismic response of a structural system is highly influenced, in addition to the earthquake input, by the dynamic characteristics of the system itself. This paper presents an approach for the identification of the characteristics of the structural system resisting to horizontal loads which enables to satisfy given seismic performance objectives. This is achieved by considering a total conceptual separation between the structural systems resisting to vertical and horizontal loads. The proposed approach is first briefly developed in general within a Performance-Based Seismic Design (PBSD) framework and then fully applied to the case study of a five-storey steel building structure. It is composed of three basic steps: (1) identification of the fundamental characteristics which should be possessed by the horizontal resisting system to satisfy a multiplicity of performance objectives, (2) development of a peculiar horizontal resisting system composed of "crescent shaped braces" which are specifically calibrated to satisfy given performance objectives, (3) verification, by means of appropriate time-history analyses, of the seismic performances achieved. In detail, the horizontal resisting system is calibrated to satisfy a multiplicity of performance objectives through the identification of an "objectives curve", in the Force-Displacement diagram, of the mechanical characteristics of the structure. The calibration is obtained by methods/tools borrowed either from Direct Displacement-Based Design (DDBD) or Force-Based Design (FBD), depending on the specific performance objective to be imposed. The applicative example has been carried out with reference to three performance objectives and has led to the identification of a horizontal resisting system composed of special bracing elements capable of realizing a sort of properly-calibrated seismic isolation called crescent-shaped braces. The results obtained through non-linear dynamic analyses have shown that the proposed approach leads to the congruity between the imposed and the achieved seismic performances.
基金Financial support from the Beijing Natural Science Foundation (No. KZ200810016007)the National 973 Key Program (No. 2010CB732003)the National Science Foundation of China(NSFC) (No. 50825403) is gratefully acknowledged
文摘Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures
文摘The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.
基金sponsored by the Scientific Foundation for Returned Oversea Scholars of China (Grant No.20101020044)the State Key Laboratory of Hydro–Science and Engineering (Grant Nos. 2008Z6 and 2009-TC-2)
文摘This paper presents an efficient time-integration method for obtaining reliable solutions to the second-order nonlinear dynamic problems in structural engineering. This method employs both the backward-acceleration differentiation formula and the trapezoidal rule, resulting in a self-starting, single step, second-order accurate algorithm. With the same computational effort as the trapezoidal rule, the proposed method remains stable in large deformation and long time range solutions even when the trapezoidal rule fails. Meanwhile, the proposed method has the following characteristics: (1) it is applicable to linear as well as general nonlinear analyses; (2) it does not involve additional variables (e.g. Lagrange multipliers) and artificial parameters; (3) it is a single-solver algorithm at the discrete time points with symmetric effective stiffness matrix and effective load vectors; and (4) it is easy to implement in an existing computational software. Some numerical results indicate that the proposed method is a powerful tool with some notable features for practical nonlinear dynamic analyses.
基金partially supported by the Leading Talent Project of Guangdong Province of Chinathe National Key S&T Special Projects of China on CNC machine tools and fundamental manufacturing equipments(Grant No.2010ZX04001-191 and 2011ZX04002-032)
文摘A novel approach,which can be used for dynamic characteristics analysis of machine tools based on unit structure(US),is reported in this paper.The concepts of unit structures for design of machine tools are defined.In order to satisfy the dynamic characteristics requirement of high natural frequency and light-weight of US,a design method of multi-disciplinary optimization of NSGA-II about unit structures driven by natural frequency and mass is developed.Through analyzing the unit structures,key factors affecting the natural frequency and mass are extracted,and the mathematical models of natural frequency and mass about unit structures are also established by using central composite design and response surface model.The goal of high natural frequency and light-weight is reached by using the multi-objective genetic algorithms.The Pareto optimal set is also obtained.The dynamic behavior of US is investigated by the experimental modal analysis.To show the efficiency of the proposed novel method,the example of YKW51250 gear shaping machine bed is used.Through optimization of NSGA-II about US of YKW51250 machine bed,the natural frequency of YKW51250 gear shaping machine bed is increased by 30.4%and its mass decreased by 5.2%comparing with the original design.By studying the dynamic characteristics of the simplified machine tools bed,useful laws are obtained,and these laws can be used in primary design of NC machine tools structures.The optimal method based on US can be also applied to the dynamic optimal design of machine tools and other similar equipments.