Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to ra...Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.展开更多
Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly wat...Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behavior.展开更多
A new finite element modeling method has been developed using laminate theory in a virtual work principle for active constraining layer damping plate. The frequency dependent modulus of viscoelastic material is descri...A new finite element modeling method has been developed using laminate theory in a virtual work principle for active constraining layer damping plate. The frequency dependent modulus of viscoelastic material is described by introducing a few dissipation coordinates, known as GHM (Golla-Hughes-McTavish) method, a standard linear system with constant coefficient. The effectiveness of this method is validated by experimental model. Compared with conventional methods, this method can reduce a number of degrees of freedom and improve accuracy, provides a good model for analogous configurations.展开更多
Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, h...Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3dr, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
文摘Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.
文摘Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behavior.
文摘A new finite element modeling method has been developed using laminate theory in a virtual work principle for active constraining layer damping plate. The frequency dependent modulus of viscoelastic material is described by introducing a few dissipation coordinates, known as GHM (Golla-Hughes-McTavish) method, a standard linear system with constant coefficient. The effectiveness of this method is validated by experimental model. Compared with conventional methods, this method can reduce a number of degrees of freedom and improve accuracy, provides a good model for analogous configurations.
文摘Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH3BH3 ) and metal amidoboranes (MAB, MNH2BH3), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3dr, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.