Power loss sometimes needs particular consideration in coal mine. This paper analyzes the main three parts of power consuming of RS 485 system, that is quiescent power consuming, transmission power consuming and perip...Power loss sometimes needs particular consideration in coal mine. This paper analyzes the main three parts of power consuming of RS 485 system, that is quiescent power consuming, transmission power consuming and peripheral equipment power consuming. How to reduce the power consuming in RS 485 designs is introduced, and also the method of hardware and software design is presented including choosing low power transceiver, optimizing communication data structure, optimizing communication working mode.展开更多
According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management...According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.展开更多
In this study, the structure and quality controlled growth of InAs nanowires using Au catalysts in a molecular beam epitaxy reactor is presented. By tuning the indium concentration in the catalyst, defect-free wurtzit...In this study, the structure and quality controlled growth of InAs nanowires using Au catalysts in a molecular beam epitaxy reactor is presented. By tuning the indium concentration in the catalyst, defect-free wurtzite structure and defect-free zinc blende structure InAs nanowires can be induced. It is found that these defect-free zinc blende structure InAs nanowires grow along 〈110〉 directions with four low-energy {111} and two {110} side-wall facets and adopt the (111) catalyst/nanowire interface. Our structural and chemical characterization and calculations identify the existence of a catalyst supersaturation threshold for the InAs nanowire growth. When the In concentration in the catalyst is sufficiently high, defect-free zinc blende structure InAs nanowires can be induced. This study provides an insight into the manipulation of crystal structure and structure quality of III-V semiconductor nanowires through catalyst engineering.展开更多
文摘Power loss sometimes needs particular consideration in coal mine. This paper analyzes the main three parts of power consuming of RS 485 system, that is quiescent power consuming, transmission power consuming and peripheral equipment power consuming. How to reduce the power consuming in RS 485 designs is introduced, and also the method of hardware and software design is presented including choosing low power transceiver, optimizing communication data structure, optimizing communication working mode.
文摘According to the current problems of safety management processes in coalmine enterprises,we introduced barrel theory to coal mine safety management,constructedthe closed-loop structure of a coal mine safety management system,andpointed out that efficient safety management lies in three factors:safety quality of all ofthe staff in coal mine enterprises,weak links in security management systems,and cooperationamong departments.After conducting detailed analysis of these three factors,we proposed concrete ways of preventing and controlling potential safety hazards duringthe process of coal mine production.
文摘In this study, the structure and quality controlled growth of InAs nanowires using Au catalysts in a molecular beam epitaxy reactor is presented. By tuning the indium concentration in the catalyst, defect-free wurtzite structure and defect-free zinc blende structure InAs nanowires can be induced. It is found that these defect-free zinc blende structure InAs nanowires grow along 〈110〉 directions with four low-energy {111} and two {110} side-wall facets and adopt the (111) catalyst/nanowire interface. Our structural and chemical characterization and calculations identify the existence of a catalyst supersaturation threshold for the InAs nanowire growth. When the In concentration in the catalyst is sufficiently high, defect-free zinc blende structure InAs nanowires can be induced. This study provides an insight into the manipulation of crystal structure and structure quality of III-V semiconductor nanowires through catalyst engineering.