Fast migration and efficient spatial separation of photogenerated charges in photocatalytic materials are indispensable to efficient solar water splitting reactions.Here,we construct a three-phase heterostructure of C...Fast migration and efficient spatial separation of photogenerated charges in photocatalytic materials are indispensable to efficient solar water splitting reactions.Here,we construct a three-phase heterostructure of CdS/PbTiO_(3)/TiO_(2)by selectively depositing CdS and TiO_(2)at oppositely poled crystal facets of PbTiO_(3)using single-domain ferroelectric PbTiO_(3).The heterostructure has matching band edge alignments and strong interfacial connections at different moieties.The heterostructure combines the interfacial electrical and ferroelectric fields because of their peculiar microstructures,which provide a strong driving force throughout the whole bulk to separate photogenerated charges.Almost two orders of magnitude improvement of visible-light-driven photocatalytic H_(2) production has been realized in CdS/PbTiO_(3)/TiO_(2)compared with bare PbTiO_(3)/TiO_(2),showing the efficiency of charge separation in the heterostructure.The idea of combining ferroelectrics with potential light capture semiconductor provides a paradigm to accurately design charge migration pathways,bringing a step closer to efficient solar water splitting.展开更多
基金the National Key R&D Program of China(2021YFA1500800)the National Natural Science Foundation of China(51825204,52120105003,and 52072379).
文摘Fast migration and efficient spatial separation of photogenerated charges in photocatalytic materials are indispensable to efficient solar water splitting reactions.Here,we construct a three-phase heterostructure of CdS/PbTiO_(3)/TiO_(2)by selectively depositing CdS and TiO_(2)at oppositely poled crystal facets of PbTiO_(3)using single-domain ferroelectric PbTiO_(3).The heterostructure has matching band edge alignments and strong interfacial connections at different moieties.The heterostructure combines the interfacial electrical and ferroelectric fields because of their peculiar microstructures,which provide a strong driving force throughout the whole bulk to separate photogenerated charges.Almost two orders of magnitude improvement of visible-light-driven photocatalytic H_(2) production has been realized in CdS/PbTiO_(3)/TiO_(2)compared with bare PbTiO_(3)/TiO_(2),showing the efficiency of charge separation in the heterostructure.The idea of combining ferroelectrics with potential light capture semiconductor provides a paradigm to accurately design charge migration pathways,bringing a step closer to efficient solar water splitting.