The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on f...The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.展开更多
Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first...Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first four displacement modes of intact and different damaged arch are simulated and the displacement mode changes are obtained. Next, the wavelet transformation is applied to the displacement mode changes in arch and wavelet coefficients at damage loci are picked. Finally, the damage index including damage location and damage intensity in arch is provided and plotted. The results show that wavelet coefficient module maximum of mode changes can be the damage indicator and is influenced by damage location and damage intensity. The damage indicator is proportional to the damage intensity and present monotonic trend according to damage location which depend on the mode order. At the same time, the large modulus maximum corresponds to small damage combination of location and intensity in the first four modes.展开更多
This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves usin...This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.展开更多
文摘The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.
文摘Arch is a typical complex structure comparing with beam and plate in bridge system. This paper investigates the damage characteristic combining the crack location with the crack intensity in arch. Initially, the first four displacement modes of intact and different damaged arch are simulated and the displacement mode changes are obtained. Next, the wavelet transformation is applied to the displacement mode changes in arch and wavelet coefficients at damage loci are picked. Finally, the damage index including damage location and damage intensity in arch is provided and plotted. The results show that wavelet coefficient module maximum of mode changes can be the damage indicator and is influenced by damage location and damage intensity. The damage indicator is proportional to the damage intensity and present monotonic trend according to damage location which depend on the mode order. At the same time, the large modulus maximum corresponds to small damage combination of location and intensity in the first four modes.
文摘This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.