尽管传统的词袋(BoW,bag of worcls)模型在复杂场景行为识别中能够保持鲁棒性,但是硬向量量化会导致大量的近似误差,进而产生很差的特征集。行为识别中一个重要的挑战是视觉词汇的构造,从原始特征到分类标签没有直接的映射,因此高层的...尽管传统的词袋(BoW,bag of worcls)模型在复杂场景行为识别中能够保持鲁棒性,但是硬向量量化会导致大量的近似误差,进而产生很差的特征集。行为识别中一个重要的挑战是视觉词汇的构造,从原始特征到分类标签没有直接的映射,因此高层的视觉描述子需要更加精确的词典,故提出基于结构稀疏表示的人体行为识别方法。在所提出方法的:BoW模型中,视频表示为组稀疏编码系数的直方图。与传统的BoW模型相比,所提方法具有更少的量化误差,而且高层特征表示可以减少模型参数和存储复杂性,并在标准化的人体行为数据集上评价所提方法,数据集包括KTH,Weimann,UCF-Sports,UCF50人体行为数据集,实验结果表明,所提方法与现存的其他方法相比各方面性能都有显著的提高。展开更多
文摘尽管传统的词袋(BoW,bag of worcls)模型在复杂场景行为识别中能够保持鲁棒性,但是硬向量量化会导致大量的近似误差,进而产生很差的特征集。行为识别中一个重要的挑战是视觉词汇的构造,从原始特征到分类标签没有直接的映射,因此高层的视觉描述子需要更加精确的词典,故提出基于结构稀疏表示的人体行为识别方法。在所提出方法的:BoW模型中,视频表示为组稀疏编码系数的直方图。与传统的BoW模型相比,所提方法具有更少的量化误差,而且高层特征表示可以减少模型参数和存储复杂性,并在标准化的人体行为数据集上评价所提方法,数据集包括KTH,Weimann,UCF-Sports,UCF50人体行为数据集,实验结果表明,所提方法与现存的其他方法相比各方面性能都有显著的提高。