The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, an...The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
Coordination polymeric solid, {[Ag 2 (bpp) 2 (H 2 O) 2 ](chd)·9H 2 O} n (1) (bpp = 1,3-bis(4-pyridyl) propane, H 2 chd = 1,4-cyclo-hexanedicarboxylic acid), has been obtained by the solution phase ultrasonic synt...Coordination polymeric solid, {[Ag 2 (bpp) 2 (H 2 O) 2 ](chd)·9H 2 O} n (1) (bpp = 1,3-bis(4-pyridyl) propane, H 2 chd = 1,4-cyclo-hexanedicarboxylic acid), has been obtained by the solution phase ultrasonic synthesis techniques. The structure established through X-ray structural analysis shows that the compound traps an interesting 1D water tape built by the alternating "three-pointed star" cage-like pentameric and D 2h tetrameric clusters (C2/c, Z = 4; a = 30.37(2) , b = 9.271(5) , and c = 18.89(1) ; β = 128.47°; V = 4164(4) 3 ). The novelty of the present complex is the rarely crystallographic example of the cage-shaped water pentamer, which is usually ascribed to a less-stable species. A first-principle density functional theory (DFT) calculation demonstrates that the interconnectivity between cage-like pentamers and D 2h tetramers is beneficial for contribution to the structural stabilization of these less-stable water cluster species.展开更多
The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently...The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors. In particular, it is shown that as the Taylor number crosses the critical number, the system undergoes either a continuous or a jump dynamic transition, dictated by the sign of a computable, nondimensional parameter R. In addition, it is also shown that the new transition states have the Taylor vortex type of flow structure, which is structurally stable.展开更多
基金ACKNOWLEDGMENTS This work was supported by the Doctoral Discipline Foundation of the Ministry of Education of China (No.20070533118) and the National Natural Science Foundation of China (No.50871124). The authors acknowledge Dr. Y. Z. Nie for his useful discussion in calculations.
文摘The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金supported by the National Natural Science Foundation of China (50971063)the Natural Science Foundation of Fujian Province (2003F006, 2010J01042, 2011J01047)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of Chinathe Startup Package Funding of Huaqiao University (10BS210) for supporting
文摘Coordination polymeric solid, {[Ag 2 (bpp) 2 (H 2 O) 2 ](chd)·9H 2 O} n (1) (bpp = 1,3-bis(4-pyridyl) propane, H 2 chd = 1,4-cyclo-hexanedicarboxylic acid), has been obtained by the solution phase ultrasonic synthesis techniques. The structure established through X-ray structural analysis shows that the compound traps an interesting 1D water tape built by the alternating "three-pointed star" cage-like pentameric and D 2h tetrameric clusters (C2/c, Z = 4; a = 30.37(2) , b = 9.271(5) , and c = 18.89(1) ; β = 128.47°; V = 4164(4) 3 ). The novelty of the present complex is the rarely crystallographic example of the cage-shaped water pentamer, which is usually ascribed to a less-stable species. A first-principle density functional theory (DFT) calculation demonstrates that the interconnectivity between cage-like pentamers and D 2h tetramers is beneficial for contribution to the structural stabilization of these less-stable water cluster species.
基金supported by the National Science Foundation, the Office of Naval Research and the National Natural Science Foundation of China
文摘The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors. In particular, it is shown that as the Taylor number crosses the critical number, the system undergoes either a continuous or a jump dynamic transition, dictated by the sign of a computable, nondimensional parameter R. In addition, it is also shown that the new transition states have the Taylor vortex type of flow structure, which is structurally stable.