Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
The hydraulic reclamation coral clay is a new type of clay,formed during the sorting process of coral island reef reclamation.The foundation of the hydraulic reclamation coral reef consists of coral sand,silt,and clay...The hydraulic reclamation coral clay is a new type of clay,formed during the sorting process of coral island reef reclamation.The foundation of the hydraulic reclamation coral reef consists of coral sand,silt,and clay.The part of the particles with particle size less than 0.075 mm contain more than 50%forms clay.As a new type of clay,the geotechnical properties were rarely reported in previous studies.In this paper,the physical and mechanical properties,microstructure and mineral composition were comprehensively researched by a series of laboratory tests.The results show that coral clay is a low liquid limit clay with high pore ratio and high saturation.From the aspect of mineral compositions,the coral clay studied consists of calcite and aragonite,while the chemical composition of it is calcium carbonate.The void ratio has a significant effect on the compressive properties of coral clay.With the increase of the void ratio,the compression coefficient a_(1-2) and compression index C_(c) gradually increase,and the compression modulus Es gradually decreases.The undrained stress−strain curve of coral clay shows a strain-softening behavior,and the peak strength and residual strength are positively linear correlated with confining pressure.展开更多
The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic text...The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic texture,grain size and distribution,and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction(EBSD).The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number.The fraction of low angle grain boundaries(LAGBs) decreases after CEC deformation,and a high fraction of high angle grain boundaries(HAGBs) is revealed after 8 passes of CEC.Moreover,the initial fiber texture becomes random during CEC processing and develops a new texture.展开更多
Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressiv...Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressive strength of the composites were measured.The effects of mass fraction of cenospheres on the microstructure and compressive properties were characterized.The results show that the cenospheres are uniformly distributed in the matrix and there is no sign of cenosphere cluster or residual pore.The densities of the composites are 1.85-1.92 g/cm 3 .By comparing with matrix,the compressive yield strength of the composites is improved,and the cenospheres is filled with Mg matrix alloy.SEM,XRD and EDX results of the composites show clear evidence of reaction product at cenosphere/matrix interface.On the basis of XRD and EDX,composition, structure and thermodynamic analysis,the main interfacial phase between the cenosphere and AZ91D Mg alloy was identified to be MgAl2O4.展开更多
The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution elec...The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.展开更多
In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dim...In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).展开更多
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.
基金Projects(51878103,41831282,51778092)supported by the National Natural Science Foundation of China。
文摘The hydraulic reclamation coral clay is a new type of clay,formed during the sorting process of coral island reef reclamation.The foundation of the hydraulic reclamation coral reef consists of coral sand,silt,and clay.The part of the particles with particle size less than 0.075 mm contain more than 50%forms clay.As a new type of clay,the geotechnical properties were rarely reported in previous studies.In this paper,the physical and mechanical properties,microstructure and mineral composition were comprehensively researched by a series of laboratory tests.The results show that coral clay is a low liquid limit clay with high pore ratio and high saturation.From the aspect of mineral compositions,the coral clay studied consists of calcite and aragonite,while the chemical composition of it is calcium carbonate.The void ratio has a significant effect on the compressive properties of coral clay.With the increase of the void ratio,the compression coefficient a_(1-2) and compression index C_(c) gradually increase,and the compression modulus Es gradually decreases.The undrained stress−strain curve of coral clay shows a strain-softening behavior,and the peak strength and residual strength are positively linear correlated with confining pressure.
基金Projects(50674067,51074106) supported by the National Natural Science Foundation of ChinaProject(09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality,China
文摘The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic texture,grain size and distribution,and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction(EBSD).The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number.The fraction of low angle grain boundaries(LAGBs) decreases after CEC deformation,and a high fraction of high angle grain boundaries(HAGBs) is revealed after 8 passes of CEC.Moreover,the initial fiber texture becomes random during CEC processing and develops a new texture.
基金Project(2007KZ07)supported by Plans for Science and Technology of Changchun City,ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the 985 Project of Jilin University,China
文摘Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressive strength of the composites were measured.The effects of mass fraction of cenospheres on the microstructure and compressive properties were characterized.The results show that the cenospheres are uniformly distributed in the matrix and there is no sign of cenosphere cluster or residual pore.The densities of the composites are 1.85-1.92 g/cm 3 .By comparing with matrix,the compressive yield strength of the composites is improved,and the cenospheres is filled with Mg matrix alloy.SEM,XRD and EDX results of the composites show clear evidence of reaction product at cenosphere/matrix interface.On the basis of XRD and EDX,composition, structure and thermodynamic analysis,the main interfacial phase between the cenosphere and AZ91D Mg alloy was identified to be MgAl2O4.
基金Project(2008329)supported by Liaoning Provincial Education Ministry,ChinaProject supported by the Key Laboratory of Material Processing & Control of Liaoning Province,China
文摘The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.
基金Project(2007CB613703)supported by the National Basic Research Program of ChinaProject(50890172)supported by the National Natural Science Foundation of China
文摘In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).