期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
边坡地层参数的优化反演 被引量:19
1
作者 刘迎曦 吴立军 韩国城 《岩土工程学报》 EI CAS CSCD 北大核心 2001年第3期315-318,共4页
以位移反馈确定边坡地层参数的方法为基础 ,引入优化反演思想及结构模量与结构缺陷度的概念 ,建立起等效横观各向同性边坡体的地层参数优化反演的有限元方法 ,可快捷可靠地搜索到地层参数反演的最优值。
关键词 地层参数 结构模量 结构缺陷度 边坡
下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
2
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
下载PDF
Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation 被引量:1
3
作者 Caiqin Wang Danil Bukhvalov +2 位作者 M.Cynthia Goh Yukou Du Xiaofei Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期851-861,共11页
The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon ... The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites. 展开更多
关键词 AgAu nanohybrids Hierarchical nanostructures Defected surface DFT calculation Ethanol electrooxidation
下载PDF
Node shift method for stiffness-based optimization of single-layer reticulated shells 被引量:2
4
作者 Chang-yu CUI Bao-shi JIANG You-bao WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第2期97-107,共11页
This paper presents a node shift method to find the optimal distribution of nodes in single-layer reticulated shells. The optimization process searches for the minimum strain energy configuration and this leads to red... This paper presents a node shift method to find the optimal distribution of nodes in single-layer reticulated shells. The optimization process searches for the minimum strain energy configuration and this leads to reduced sensitivity in initial imper- fections. Strain energy sensitivity numbers are derived for free shift and restricted shift where nodes can move freely in the 3D space or have to move within a predefmed surface respectively. Numerical examples demonstrate the efficiency of the proposed approach. It was found that optimized structures achieve higher ultimate load and are less sensitive to imperfections than the initial structure. The configuration of the final structure is closely related to factors like the initial structural configuration, spatial conditions, etc. Based on different initial conditions, architects can be provided with diverse reasonable structures. Furthermore, by amending the defined shapes and nodal distributions, it is possible to improve the mechanical behavior of the structures. 展开更多
关键词 Node shifts Strain energy sensitivity Structural optimization Static stability Imperfection sensitivity
原文传递
Research on the nanometric machining of a single crystal nickel via molecular dynamics simulation 被引量:4
5
作者 GONG Ya Dong ZHU Zong Xiao +1 位作者 ZHOU Yun Guang SUN Yao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1837-1846,共10页
Molecular dynamics simulations are employed to study the nanometric machining process of single crystal nickel. Atoms from different machining zones had different atomic crystal structures owing to the differences in ... Molecular dynamics simulations are employed to study the nanometric machining process of single crystal nickel. Atoms from different machining zones had different atomic crystal structures owing to the differences in the actions of the cutting tool. The stacking fault tetrahedral was formed by a series of dislocation reactions, and it maintained the stable structure after the dislocation reactions. In addition, evidence of crystal transition and recovery was found by analyzing the number variations in different types of atoms in the primary shear zone, amorphous region, and crystalline region. The effects of machining speed on the cutting force, chip and subsurface defects, and temperature of the contact zone between the tool and workpiece were investigated. The results suggest that higher the machining speed, larger is the cutting force. The degree of amorphousness of chip atoms and the depth and extent of subsurface defects increase with the machining speed. The average friction coefficient first decreases and then increases with the machining speed because of the temperature difference between the chip and machining surface. 展开更多
关键词 molecular dynamics simulation nanometric machining single crystal nickel crystal transition and recovery machining speed
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部