This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration o...This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.展开更多
In H.264,computational complexity and memory access of deblocking filters are variable,dependent on video contents.This paper proposes a VLSI architecture of deblocking filters with adaptive dynamic power,which avoids...In H.264,computational complexity and memory access of deblocking filters are variable,dependent on video contents.This paper proposes a VLSI architecture of deblocking filters with adaptive dynamic power,which avoids redundant computations and memory accesses by precluding the blocks that can be skipped.The vertical and horizontal edges are simulta-neously processed in an advanced scan order to speed up the decoder.As a result,dynamic power of the proposed architecture can be reduced adaptively(up to about 89%) for different videos,and the off-chip memory access is improved when compared to previous designs.Moreover,the processing capability of the proposed architecture is in particular appropriate for real-time deblocking of high-definition television(HDTV,1920×1080 pixels/frame,60 frames/s video signals) video operation at 62 MHz.Using the proposed architecture,power can be reduced by up to about 89% and processing time by from 25% to 81% compared with previous designs.展开更多
文摘This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.
基金Project (No. NSS’USA5978) supported by the National Science Foundation of the United States under the East Asia Pacific Program
文摘In H.264,computational complexity and memory access of deblocking filters are variable,dependent on video contents.This paper proposes a VLSI architecture of deblocking filters with adaptive dynamic power,which avoids redundant computations and memory accesses by precluding the blocks that can be skipped.The vertical and horizontal edges are simulta-neously processed in an advanced scan order to speed up the decoder.As a result,dynamic power of the proposed architecture can be reduced adaptively(up to about 89%) for different videos,and the off-chip memory access is improved when compared to previous designs.Moreover,the processing capability of the proposed architecture is in particular appropriate for real-time deblocking of high-definition television(HDTV,1920×1080 pixels/frame,60 frames/s video signals) video operation at 62 MHz.Using the proposed architecture,power can be reduced by up to about 89% and processing time by from 25% to 81% compared with previous designs.