The three systems of pure Zn, Zn-0.10% Mg(mass fraction), and Zn-0.15% Mg(mass fraction) were cast under controlled atmosphere and their microstructures were characterized by SEM/EDS analysis. The electrochemical corr...The three systems of pure Zn, Zn-0.10% Mg(mass fraction), and Zn-0.15% Mg(mass fraction) were cast under controlled atmosphere and their microstructures were characterized by SEM/EDS analysis. The electrochemical corrosion behavior of these three samples was examined in the very aggressive solution of 50% H2SO4(mass fraction) using electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization measurements. The results show that magnesium improves in some extent the corrosion resistance of pure Zn in 50% H2SO4(mass fraction) confirmed by EIS test. Results of polarization measurment also demonstrate that small amount of Mg significantly improves the passivation of Zn in the test solution. Results of surface morphology of the samples and EDS analysis reveal that Mg reduced the corrosion attacks to pure Zn.展开更多
Measuring the Hamiltonian of dipolar coupled spin systems is usually a difficult task due to the high complexity of their spectra. Currently, molecules with unknown geometrical structure and low symmetry are extremely...Measuring the Hamiltonian of dipolar coupled spin systems is usually a difficult task due to the high complexity of their spectra. Currently, molecules with unknown geometrical structure and low symmetry are extremely tedious or impossible to analyze by sheer spectral fitting. We present a novel method that addresses the problem of spectral analysis and report experimental results of extracting, by spectral fitting, the parameters of an oriented 6-spin system with very low symmetry in structure, without using apriori knowledge or assumptions on the molecular geometry or order parameters. The advantages of our method are achieved with the use of a new spectral analysis algorithm non-assigned frequency optimization of NMR spectra (NAFONS) and by the use of simplified spectra obtained by transition selective pulses. This new method goes beyond the limit of spectral analysis for dipolar coupled spin systems and is helpful for related fields, such as quantum computation and molecular structure analysis.展开更多
文摘The three systems of pure Zn, Zn-0.10% Mg(mass fraction), and Zn-0.15% Mg(mass fraction) were cast under controlled atmosphere and their microstructures were characterized by SEM/EDS analysis. The electrochemical corrosion behavior of these three samples was examined in the very aggressive solution of 50% H2SO4(mass fraction) using electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization measurements. The results show that magnesium improves in some extent the corrosion resistance of pure Zn in 50% H2SO4(mass fraction) confirmed by EIS test. Results of polarization measurment also demonstrate that small amount of Mg significantly improves the passivation of Zn in the test solution. Results of surface morphology of the samples and EDS analysis reveal that Mg reduced the corrosion attacks to pure Zn.
文摘Measuring the Hamiltonian of dipolar coupled spin systems is usually a difficult task due to the high complexity of their spectra. Currently, molecules with unknown geometrical structure and low symmetry are extremely tedious or impossible to analyze by sheer spectral fitting. We present a novel method that addresses the problem of spectral analysis and report experimental results of extracting, by spectral fitting, the parameters of an oriented 6-spin system with very low symmetry in structure, without using apriori knowledge or assumptions on the molecular geometry or order parameters. The advantages of our method are achieved with the use of a new spectral analysis algorithm non-assigned frequency optimization of NMR spectra (NAFONS) and by the use of simplified spectra obtained by transition selective pulses. This new method goes beyond the limit of spectral analysis for dipolar coupled spin systems and is helpful for related fields, such as quantum computation and molecular structure analysis.