Tension leg platform (TLP) has been one of the most favorite deep-water platform concepts for offshore oil and gas field exploration and development. As of now,a total of 24 TLPs have been installed worldwide with 3 m...Tension leg platform (TLP) has been one of the most favorite deep-water platform concepts for offshore oil and gas field exploration and development. As of now,a total of 24 TLPs have been installed worldwide with 3 more to be installed in the near future and 5 more under design. Most of these installations are in the Gulf of Mexico (GoM). Water depths for these TLP installations range from 150 m to 1 600 m. It is highly expected that China will have her first TLP designed,fabricated,and installed in the very near future. In order to satisfy the need for a unified hull structural design practice,this paper presents the design philosophy of a conventional TLP hull structure with emphases on critical structural components design and analysis methodologies.展开更多
This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization,...This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization, interactivity, intelligence, and incentives in one of the English to students. System uses JavaEE framework to build, each module uses a low coupling between the way facilitate future extensions. The system can help students build confidence and motivate its progress.展开更多
The construction of the palace carries with it the importance of a country's political power. It shows the highest degree of a country's culture and represents the significant of planning artistic style.The modes of...The construction of the palace carries with it the importance of a country's political power. It shows the highest degree of a country's culture and represents the significant of planning artistic style.The modes of landscape plan of both Geunjeongjeon of Seoul Gyeongbokgung,and Chongzheng Hall in Shenyang imperial palace is characterized with the unique national culture under its own construction background. This article is to find out the feature of the spatial construction and the deepen artistic by analyzing the Plan technique structure modelling design and eyesight design for sDatial of the two palaces.展开更多
Developing materials with excellent properties has been the untiring pursuit of mankind.Metallic glasses(MGs)would be the ideal metallic materials if their size could be scaled up to be comparable to traditional metal...Developing materials with excellent properties has been the untiring pursuit of mankind.Metallic glasses(MGs)would be the ideal metallic materials if their size could be scaled up to be comparable to traditional metals.To address this challenge,a variety of approaches have been attempted over the past decades,including thermodynamicsbased alloy,3D printing and the recent artificial intelligenceguided optimal alloy.In this study,a facile and flexible route was demonstrated to manufacture giant MGs(GMGs)with diameters more than 100 mm through the thermo-joining process.The jointed GMG samples feature almost the same performance as the as-cast ones.The ability of manufacturing complex 3D components such as the Chinese Zodiacs was also demonstrated.Our approach might overcome the longstanding problem of glass forming ability(GFA)limitations in alloy systems and pave new concept and route to fabricate size unlimited MGs.展开更多
The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the ups...The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the upstream high pressure (HP) turbine stage to the downstream low pressure (LP) turbine stage. Named by its position, this kind of duct is always called intermediate turbine ducts (ITDs). Due to the pursuit of higher thrust ratio of the aeroengine, this kind of ITDs has to beas short as possible which leads to aggressive (high diffusion) S-shaped ITDs' geometry. In this paper, two different schemes of high diffusion separation-free S-shaped ITDs were studied with the aid of three-dimensional CFD programs. Although these two ITDs have the same area ratios (AR), because of the different duct length, they have totally different area as well as area change rates. With the detailed calculation results, comparisons were made to investigate the underneath physical mechanisms. Additionally, a direct estimation of the ITDs' loss is given at the end of this paper and some ITDs' novel design idea is proposed to initiate some further discussions.展开更多
文摘Tension leg platform (TLP) has been one of the most favorite deep-water platform concepts for offshore oil and gas field exploration and development. As of now,a total of 24 TLPs have been installed worldwide with 3 more to be installed in the near future and 5 more under design. Most of these installations are in the Gulf of Mexico (GoM). Water depths for these TLP installations range from 150 m to 1 600 m. It is highly expected that China will have her first TLP designed,fabricated,and installed in the very near future. In order to satisfy the need for a unified hull structural design practice,this paper presents the design philosophy of a conventional TLP hull structure with emphases on critical structural components design and analysis methodologies.
文摘This paper analyzes advantages and disadvantages of the current several popular computer-aided English learning software. combined with modem English teaching philosophy, proposed learning system with synchronization, interactivity, intelligence, and incentives in one of the English to students. System uses JavaEE framework to build, each module uses a low coupling between the way facilitate future extensions. The system can help students build confidence and motivate its progress.
文摘The construction of the palace carries with it the importance of a country's political power. It shows the highest degree of a country's culture and represents the significant of planning artistic style.The modes of landscape plan of both Geunjeongjeon of Seoul Gyeongbokgung,and Chongzheng Hall in Shenyang imperial palace is characterized with the unique national culture under its own construction background. This article is to find out the feature of the spatial construction and the deepen artistic by analyzing the Plan technique structure modelling design and eyesight design for sDatial of the two palaces.
基金the Key Basic and Applied Research Program of Guangdong ProvinceChina(2019B030302010)+2 种基金the National Natural Science Foundation of China(51871157)the Science and Technology Innovation Commission of Shenzhen(JCYJ20170412111216258)the National Key Research and Development Program of China(2018YFA0703605)。
文摘Developing materials with excellent properties has been the untiring pursuit of mankind.Metallic glasses(MGs)would be the ideal metallic materials if their size could be scaled up to be comparable to traditional metals.To address this challenge,a variety of approaches have been attempted over the past decades,including thermodynamicsbased alloy,3D printing and the recent artificial intelligenceguided optimal alloy.In this study,a facile and flexible route was demonstrated to manufacture giant MGs(GMGs)with diameters more than 100 mm through the thermo-joining process.The jointed GMG samples feature almost the same performance as the as-cast ones.The ability of manufacturing complex 3D components such as the Chinese Zodiacs was also demonstrated.Our approach might overcome the longstanding problem of glass forming ability(GFA)limitations in alloy systems and pave new concept and route to fabricate size unlimited MGs.
文摘The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the upstream high pressure (HP) turbine stage to the downstream low pressure (LP) turbine stage. Named by its position, this kind of duct is always called intermediate turbine ducts (ITDs). Due to the pursuit of higher thrust ratio of the aeroengine, this kind of ITDs has to beas short as possible which leads to aggressive (high diffusion) S-shaped ITDs' geometry. In this paper, two different schemes of high diffusion separation-free S-shaped ITDs were studied with the aid of three-dimensional CFD programs. Although these two ITDs have the same area ratios (AR), because of the different duct length, they have totally different area as well as area change rates. With the detailed calculation results, comparisons were made to investigate the underneath physical mechanisms. Additionally, a direct estimation of the ITDs' loss is given at the end of this paper and some ITDs' novel design idea is proposed to initiate some further discussions.