To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network...To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.展开更多
As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanni...As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.展开更多
Hepatitis B virus (HBV), a typical member of the Hepadnaviridae family, is responsible for infections that cause B-type hepatitis which leads to severe public health problems around the world. The small enveloped DNA-...Hepatitis B virus (HBV), a typical member of the Hepadnaviridae family, is responsible for infections that cause B-type hepatitis which leads to severe public health problems around the world. The small enveloped DNA-containing virus replicates via reverse transcription, and this unique process is accomplished by the virally encoded reverse transcriptase (RT). This multi-functional protein plays a vital role in the viral life cycle. Here, we provide a summary of current knowledge regarding the structural characteristics and molecular mechanisms of HBV RT. Improved understanding of these processes is of both theoretical and practical significance for fundamental studies of HBV and drug discovery.展开更多
Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herei...Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herein, we have constructed the Mott-Schottky heterostructured VS2/MoS2 hybrids with tailorable 1T/2H phase based on their matchable formation energy, which are made of metallic and few-layered VS2 vertically grown on MoS2 surface. The density functional theory(DFT) calculations unveil that such heterojunctions drive the rearrangement of energy band with a facilitated reaction kinetics and enhance the Li adsorption energy more than twice compared to the MoS2 surface. Furthermore, the VS2 catalytically expedites the Li–S bond fracture and meantime the enriched Mo6+ enables the sulfur anchoring toward the oriented reaction with Li+to form Li2S, synergistically enhancing the reversibility of electrochemical redox. Consequently, the as-obtained VS2/MoS2 hybrids deliver a very large specific capacity of 1273 m Ah g^-1 at 0.1 A g^-1 with 61% retention even at 5 A g^-1. It can also stabilize 100 cycles at 0.5 A g^-1 and 500 cycles at 1 A g^-1. The findings provide in-depth insights into engineering heterojunctions towards the enhancement of reaction kinetics and reversibility for LIBs.展开更多
基金This work was supported by the National Natural Science Foundation of China under Cxants No.60970116, No. 60970115, No. 61202386, No. 61003267.
文摘To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.
文摘As one of the oldest creatures on the earth, the tortoises have formed a nearly perfect shell structure after millions of years of evolution In this paper, Chinese tortoise shell is studied. Firstly, the scanning model of the tortoise shell is established by means of computer tomography (CT) scanning technology and MIMICS software. Secondly, the solid model of three-dimensional structure of the tortoise shell is constructed by using geomagic studio reverse engineering software. Afterwards, the compression numerical simulation of the tortoise shell structure under low strain rate is conducted with the help of finite element software LS-DYNA. Finally, load-bearing characteristics of the tortoise shell structure and dome-shaped structure are compared and analyzed. The results show that compared withthe dome-shaped structure with the same volume, tortoise shell structure has a higher structural rigidity and can withstand higher pressure. Therefore, tortoise shell structure provide some reference to the design of armored vehicles, sheltersand other types of thin shell structures.
基金National Nature Science Foundations of China (30870131)Program of Chinese Academy of Sciences (0802021SA1)
文摘Hepatitis B virus (HBV), a typical member of the Hepadnaviridae family, is responsible for infections that cause B-type hepatitis which leads to severe public health problems around the world. The small enveloped DNA-containing virus replicates via reverse transcription, and this unique process is accomplished by the virally encoded reverse transcriptase (RT). This multi-functional protein plays a vital role in the viral life cycle. Here, we provide a summary of current knowledge regarding the structural characteristics and molecular mechanisms of HBV RT. Improved understanding of these processes is of both theoretical and practical significance for fundamental studies of HBV and drug discovery.
基金This work was supported by the National Natural Science Foundation of China(51672082,21975074 and 91534202)the Basic Research Program of Shanghai(17JC1402300)+2 种基金the Shanghai Scientific and Technological Innovation Project(18JC1410500)the National Program for Support of Top-Notch Young Professionalsthe Fundamental Research Funds for the Central Universities(222201718002).
文摘Heterostructures have lately been recognized as a viable implement to achieve high-energy Li-ion batteries(LIBs) because the as-formed built-in electric field can greatly accelerate the charge transfer kinetics. Herein, we have constructed the Mott-Schottky heterostructured VS2/MoS2 hybrids with tailorable 1T/2H phase based on their matchable formation energy, which are made of metallic and few-layered VS2 vertically grown on MoS2 surface. The density functional theory(DFT) calculations unveil that such heterojunctions drive the rearrangement of energy band with a facilitated reaction kinetics and enhance the Li adsorption energy more than twice compared to the MoS2 surface. Furthermore, the VS2 catalytically expedites the Li–S bond fracture and meantime the enriched Mo6+ enables the sulfur anchoring toward the oriented reaction with Li+to form Li2S, synergistically enhancing the reversibility of electrochemical redox. Consequently, the as-obtained VS2/MoS2 hybrids deliver a very large specific capacity of 1273 m Ah g^-1 at 0.1 A g^-1 with 61% retention even at 5 A g^-1. It can also stabilize 100 cycles at 0.5 A g^-1 and 500 cycles at 1 A g^-1. The findings provide in-depth insights into engineering heterojunctions towards the enhancement of reaction kinetics and reversibility for LIBs.