The contribution of the resonant continuum to pairing correlations is investigated in the relativistic mean field theory plus Bardeen–Cooper–Schrieffer (BCS) approximation with a constant pairing strength. The reson...The contribution of the resonant continuum to pairing correlations is investigated in the relativistic mean field theory plus Bardeen–Cooper–Schrieffer (BCS) approximation with a constant pairing strength. The resonance states with their widths in the continuum are considered explicitly. The numerical study is performed in an effective Lagrangian with the parameter set NLSH for neutron-rich nucleus <SUP>84</SUP>Ni. The results show that the effect of the proper treatment of the resonant continuum on pairing correlations for nucleus close to neutron drip line is important. It is found that the problem of an unphysical particle gas could be overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.展开更多
Canonical Watson-Crick base pairs and four representative mismatched base pairs have been studied by quantum chemical computations. Detailed anharmonic vibrational analysis was carried out to reveal some vibrational s...Canonical Watson-Crick base pairs and four representative mismatched base pairs have been studied by quantum chemical computations. Detailed anharmonic vibrational analysis was carried out to reveal some vibrational signatures characteristic of structural aspects of the base monomers and dimers, which were well manifested in simulated 1D IR and 2D IR spectra. The degree of delocalization of the selected normal modes, represented by the potential energy distribution, was found to vary sig-nificantly from isolated bases to H-bonded dimers, and was accompanied by changes in anharmonicities of these modes. Examples are given for the generally accepted carbonyl stretching mode of base pairs appearing in the 6-m wavelength region of IR spectra.展开更多
文摘The contribution of the resonant continuum to pairing correlations is investigated in the relativistic mean field theory plus Bardeen–Cooper–Schrieffer (BCS) approximation with a constant pairing strength. The resonance states with their widths in the continuum are considered explicitly. The numerical study is performed in an effective Lagrangian with the parameter set NLSH for neutron-rich nucleus <SUP>84</SUP>Ni. The results show that the effect of the proper treatment of the resonant continuum on pairing correlations for nucleus close to neutron drip line is important. It is found that the problem of an unphysical particle gas could be overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.
基金supported by the National Natural Science Foundation of China (20727001 and 30870591)the National Basic Research Program of China (973, 2007CB815205)the Chinese Academy of Sciences through the Hundred Talent Fund
文摘Canonical Watson-Crick base pairs and four representative mismatched base pairs have been studied by quantum chemical computations. Detailed anharmonic vibrational analysis was carried out to reveal some vibrational signatures characteristic of structural aspects of the base monomers and dimers, which were well manifested in simulated 1D IR and 2D IR spectra. The degree of delocalization of the selected normal modes, represented by the potential energy distribution, was found to vary sig-nificantly from isolated bases to H-bonded dimers, and was accompanied by changes in anharmonicities of these modes. Examples are given for the generally accepted carbonyl stretching mode of base pairs appearing in the 6-m wavelength region of IR spectra.