The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential mod...The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.展开更多
The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal condu...The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.展开更多
The forming mechanism of microemulsion of sodium dodecyl sulfonate, alcohols,water and isooctane was studied, with particular emphasis on the effect of molecular weight andconcentration of alcohols. Phase diagram of t...The forming mechanism of microemulsion of sodium dodecyl sulfonate, alcohols,water and isooctane was studied, with particular emphasis on the effect of molecular weight andconcentration of alcohols. Phase diagram of the four components, alcohol, sodium dodecyl sulfonate,water and isooctane, was used as a means of study, through which the microemulsion regions weredetermined. Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at κ_m = 2(κ_m = W_(n-pentanol)/W_(SDS)) is presented. The variation of conductivities of differentmicroemulsion samples with water was measured. From the conductivities we investigated a change instructure from water droplets in oil (W/O) at low water content to liquid crystal at intermediatewater content and a stricture of oil droplets in water (O/W) at high water content.展开更多
文摘The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.
基金Project(201012200233)supported by the Freedom Explore Program of Central South University,China
文摘The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 299018).
文摘The forming mechanism of microemulsion of sodium dodecyl sulfonate, alcohols,water and isooctane was studied, with particular emphasis on the effect of molecular weight andconcentration of alcohols. Phase diagram of the four components, alcohol, sodium dodecyl sulfonate,water and isooctane, was used as a means of study, through which the microemulsion regions weredetermined. Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at κ_m = 2(κ_m = W_(n-pentanol)/W_(SDS)) is presented. The variation of conductivities of differentmicroemulsion samples with water was measured. From the conductivities we investigated a change instructure from water droplets in oil (W/O) at low water content to liquid crystal at intermediatewater content and a stricture of oil droplets in water (O/W) at high water content.