Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respe...Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.展开更多
Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor...Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor corresponding to the keyword. The PEKS is useful to keep the management of large data storages secure such as those in a cloud. In this paper, to protect against quantum computer attacks, we present a lattice-based identity-based encryption scheme with key- word search. We have proved that our scheme can achieve ciphertext indistinguishability in the random oracle model, and our scheme can also achieve trapdoor security. In particular, our scheme can designate a unique tester to test and return the search results, therefore it does not need a secure channel. To the best of our knowledge, our scheme is the first iden- tity-based encryption scheme with keyword search from lattice assumption.展开更多
基金supported in part by the fundamental key research project of Shanghai Municipal Science and Technology Commission under grant 12JC1404201the Ministry of Education Research Fund-China Mobile(2012) MCM20121032
文摘Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.
基金supported by the National Natural Science Foundation of China (No.61370203)China Postdoctoral Science Foundation Funded Project (No.2017M623008)+1 种基金Scientific Research Starting Project of SWPU (No.2017QHZ023)State Scholarship Foundation of China Scholarship Council (No.201708515149)
文摘Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor corresponding to the keyword. The PEKS is useful to keep the management of large data storages secure such as those in a cloud. In this paper, to protect against quantum computer attacks, we present a lattice-based identity-based encryption scheme with key- word search. We have proved that our scheme can achieve ciphertext indistinguishability in the random oracle model, and our scheme can also achieve trapdoor security. In particular, our scheme can designate a unique tester to test and return the search results, therefore it does not need a secure channel. To the best of our knowledge, our scheme is the first iden- tity-based encryption scheme with keyword search from lattice assumption.