期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Worker权重差分进化与Top-k排序的结果汇聚算法 被引量:2
1
作者 邢玉萍 詹永照 《通信学报》 EI CSCD 北大核心 2021年第1期27-36,共10页
针对众包结果汇聚中最优排序结果选取的时效性问题,提出了Worker权重的高效快速汇聚算法。其中Worker权重的差分进化算法重点考虑众包Worker完成排序任务存在的差异性问题,基于目标函数和约束条件中Worker完成任务的不确定性和差异性影... 针对众包结果汇聚中最优排序结果选取的时效性问题,提出了Worker权重的高效快速汇聚算法。其中Worker权重的差分进化算法重点考虑众包Worker完成排序任务存在的差异性问题,基于目标函数和约束条件中Worker完成任务的不确定性和差异性影响,建立基于差分进化算法的Worker权重优化模型,获取多数据项场景下候选结果最优权重,实现Worker权重与任务对结果性能需求匹配的最大化;提出基于Top-k排序的优化模型求解算法,针对多数据项场景下候选结果的Top-k排序选取,在合适的k值下可快速求解上述模型,获得各Worker的优化权重。所提出的基于优化的Worker权重可实现结果汇聚的匹配性与匹配速度优化,即在提升结果汇聚速度的同时,具有优化的汇聚结果性能。定性分析证明了算法的正确性,仿真实验结果也验证了算法的效果,与相关算法对比,所提算法的综合性能最优。 展开更多
关键词 众包 结果汇聚 差分进化算法 排序学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部