Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various de...Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various deadly cancers and drug-resistant strains of pathogens,there are urgent needs to develop novel therapeutic agents.Targeting nucleic acids hasn’t been the mainstream of drug discovery in the past,and the lack of 3D structural information for designing and developing drug specificity is one of the main reasons.Fortunately,many important structures of nucleic acids and their protein complexes have been determined over the past decade,which provide novel platforms for future drug design and discovery.In this review,we describe some useful nucleic acid structures,particularly their interactions with the ligands and therapeutic candidates or even drugs.We summarize important information for designing novel potent drugs and for targeting nucleic acids and protein-nucleic acid complexes to treat cancers and overcome the drug-resistant problems.展开更多
A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemio- logical threshold, known as the reproduction nu...A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemio- logical threshold, known as the reproduction number is derived and qualitatively used to investigate the existence and stability of the associated equilibrium of the model system. The disease-free equilibrium is shown to be locally-asymptotically stable when the reproductive number is less than unity, and unstable if this threshold parameter exceeds unity. It is shown, using the Centre Manifold theory, that the model undergoes the phenomenon of backward bifurcation where the stable disease-free equilibrium co- exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The analysis of the reproduction number suggests that voluntary tuber- culosis testing and treatment may lead to effective control of tuberculosis. Furthermore, numerical simulations support the fact that an increase voluntary tuberculosis testing and treatment have a positive impact in controlling the spread of tuberculosis in the community.展开更多
基金financially supported by the Georgia Cancer Coalition(GCC) Distinguished Cancer Clinicians and Scientists and by the US National Science Foundation(NSF MCB-0824837)
文摘Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various deadly cancers and drug-resistant strains of pathogens,there are urgent needs to develop novel therapeutic agents.Targeting nucleic acids hasn’t been the mainstream of drug discovery in the past,and the lack of 3D structural information for designing and developing drug specificity is one of the main reasons.Fortunately,many important structures of nucleic acids and their protein complexes have been determined over the past decade,which provide novel platforms for future drug design and discovery.In this review,we describe some useful nucleic acid structures,particularly their interactions with the ligands and therapeutic candidates or even drugs.We summarize important information for designing novel potent drugs and for targeting nucleic acids and protein-nucleic acid complexes to treat cancers and overcome the drug-resistant problems.
文摘A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemio- logical threshold, known as the reproduction number is derived and qualitatively used to investigate the existence and stability of the associated equilibrium of the model system. The disease-free equilibrium is shown to be locally-asymptotically stable when the reproductive number is less than unity, and unstable if this threshold parameter exceeds unity. It is shown, using the Centre Manifold theory, that the model undergoes the phenomenon of backward bifurcation where the stable disease-free equilibrium co- exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The analysis of the reproduction number suggests that voluntary tuber- culosis testing and treatment may lead to effective control of tuberculosis. Furthermore, numerical simulations support the fact that an increase voluntary tuberculosis testing and treatment have a positive impact in controlling the spread of tuberculosis in the community.