期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
黎曼流形上的结点几何
1
作者 Chani.,S 郭瑞芝 《科技译丛(长沙)》 1992年第2期1-5,共5页
关键词 黎曼流形 结点几何
下载PDF
二元插值的几何特征与插值结点平面构形
2
作者 崔利宏 冯大雨 《吉首大学学报(自然科学版)》 CAS 2008年第1期18-21,46,共5页
插值结点组的几何特征(GC)决定二元插值问题的解的存在性与唯一性.通过引入亏量的概念对满足GC5条件的集合进行讨论,得到了猜想在n=5时的几何平面构形.该构形确定的二元Lagrange公式最终表示成一次因子乘积的形式,进一步验证了该猜想的... 插值结点组的几何特征(GC)决定二元插值问题的解的存在性与唯一性.通过引入亏量的概念对满足GC5条件的集合进行讨论,得到了猜想在n=5时的几何平面构形.该构形确定的二元Lagrange公式最终表示成一次因子乘积的形式,进一步验证了该猜想的正确性. 展开更多
关键词 二元插值 插值组的几何特征 GCa集合亏量
下载PDF
函数│x│~α在几何型结合点组的插值多项式的发散性
3
作者 江东林 《龙岩学院学报》 2005年第3期11-15,共5页
证明了函数|x| α在几何型点组(包括Newman组)上的插值多项式除了零点和端点外亦发散.
关键词 等距 几何 Newman 发散 插值多项式
下载PDF
The t-wise intersection of relative two-weight codes
4
作者 LIU ZiHui 《Science China Mathematics》 SCIE 2014年第8期1765-1770,共6页
The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weigh... The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weight codes. 展开更多
关键词 relative two-weight code t-wise intersecting constant-weight code projective subspace value function
原文传递
Analytic approach on geometric structure of invariant manifolds of the collinear Lagrange points
5
作者 LU Jing WANG Qi WANG ShiMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第9期1703-1712,共10页
An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form... An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form,these invariant manifolds can be approximated arbitrarily closely as Taylor series around Lagrange points.These invariant manifolds are represented by algebraic equations containing the state variables only without the help of time.Thus the so-called geometric structure of these invariant manifolds is obtained.The stable,unstable and center manifolds are tangent to the stable,unstable and center eigenspaces,respectively.As an example of applicability,the invariant manifolds of L 1 point of the Sun-Earth system are considered.The stable and unstable manifolds are symmetric about the line from the Sun to the Earth,and they both reach near the Earth,so that the low energy transfer trajectory can be found based on the stable and unstable manifolds.The periodic or quasi-periodic orbits,which are chosen as nominal arrival orbits,can be obtained based on the center manifold. 展开更多
关键词 analytical method stable manifold unstable manifold center manifold geometric structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部