准确高效地发现网络中有影响力的传播者具有非常重要的理论和现实意义。近年来,结点影响力排序受到了多领域学者的广泛关注。K-shell是一种较好的结点影响力评价指标;然而,仅仅依赖结点自身K-shell值实现的算法通常具有评估结果精确度...准确高效地发现网络中有影响力的传播者具有非常重要的理论和现实意义。近年来,结点影响力排序受到了多领域学者的广泛关注。K-shell是一种较好的结点影响力评价指标;然而,仅仅依赖结点自身K-shell值实现的算法通常具有评估结果精确度不高、适用性较差等缺陷。针对此问题,提出KSN(the K-shell and neighborhood centrality)中心性模型,该算法综合考虑了结点本身及其所有二阶以内邻居结点的K-shell值。实验结果表明,所提出算法度量结点传播的能力比度中心性、介数中心性、K-shell分解、混合度分解等方法更准确。展开更多
利用复杂系统的能量特性,引入影响力概念,研究动态复杂网络的社团划分方法,以有效地发现股票网络的社团结构.利用股票收盘价,通过引入影响力和结点中心性定义,构建以影响力为权值的股票网络,并提出一种基于影响力计算模型的股票网络中...利用复杂系统的能量特性,引入影响力概念,研究动态复杂网络的社团划分方法,以有效地发现股票网络的社团结构.利用股票收盘价,通过引入影响力和结点中心性定义,构建以影响力为权值的股票网络,并提出一种基于影响力计算模型的股票网络中心结点层次聚类算法(based on the center node hierarchical clustering algorithm about the influence calculation model of stock network,BCNHC).BCNHC算法首先引入结点活跃性和影响力的定义,并给出网络中结点的影响力计算模型;然后,基于所引入的结点中心性的度量准则,选取结点中心性大的结点为中心结点,并利用结点间的亲密性和影响力模型确定相邻结点之间影响力关联度;进而,通过优先选择度值最小的结点向中心结点聚集,以降低因相邻结点所属社团不确定而导致的错误聚类;在此基础上,利用社团平均影响力关联度对相邻社团进行聚类,保证社团内所有结点的影响力关联度最大化,直至整个网络模块度最大.最后,在构建的股票网络上的实验比较和分析,验证BCNHC算法的可行性.展开更多
文摘准确高效地发现网络中有影响力的传播者具有非常重要的理论和现实意义。近年来,结点影响力排序受到了多领域学者的广泛关注。K-shell是一种较好的结点影响力评价指标;然而,仅仅依赖结点自身K-shell值实现的算法通常具有评估结果精确度不高、适用性较差等缺陷。针对此问题,提出KSN(the K-shell and neighborhood centrality)中心性模型,该算法综合考虑了结点本身及其所有二阶以内邻居结点的K-shell值。实验结果表明,所提出算法度量结点传播的能力比度中心性、介数中心性、K-shell分解、混合度分解等方法更准确。
文摘利用复杂系统的能量特性,引入影响力概念,研究动态复杂网络的社团划分方法,以有效地发现股票网络的社团结构.利用股票收盘价,通过引入影响力和结点中心性定义,构建以影响力为权值的股票网络,并提出一种基于影响力计算模型的股票网络中心结点层次聚类算法(based on the center node hierarchical clustering algorithm about the influence calculation model of stock network,BCNHC).BCNHC算法首先引入结点活跃性和影响力的定义,并给出网络中结点的影响力计算模型;然后,基于所引入的结点中心性的度量准则,选取结点中心性大的结点为中心结点,并利用结点间的亲密性和影响力模型确定相邻结点之间影响力关联度;进而,通过优先选择度值最小的结点向中心结点聚集,以降低因相邻结点所属社团不确定而导致的错误聚类;在此基础上,利用社团平均影响力关联度对相邻社团进行聚类,保证社团内所有结点的影响力关联度最大化,直至整个网络模块度最大.最后,在构建的股票网络上的实验比较和分析,验证BCNHC算法的可行性.